The Effect of Extracorporeal C3a Cellular Therapy in Severe Alcoholic Hepatitis-The Elad Trial

Julie A. Thompson, Ram M. Subramanian, Ali Alkhafaji, David J. Reich, Ross Mac Nicholas, Tarek I. Hassanein, Lewis W. Teperman, Jan Stange

1. Hepatology, University of Minnesota Medical Center, Minneapolis, MN; 2. Hepatology, Emory University School of Medicine, Atlanta, GA; 3. Transplant Intensive Care Unit, University of Pittsburgh Medical Center, Pittsburgh, PA; 4. Surgery, Drexel University Medical Center, Philadelphia, PA; 5. Hepatology, Sir Charles Gairdner Hospital, Perth, WA, Australia; 6. Hepatology, Southern California GI and Liver Centers, San Diego, CA; 7. Infectious Diseases/Nephrology, University of Rostock, Rostock, Germany; 8. Surgery, NYU Langone Medical Center, New York City, NY

Background: Alcoholic hepatitis (AH) results from hepatic inflammation, oxidative damage, cholestasis and apoptosis, all of which induce a vicious cycle that leads to liver and secondary organ failure associated with poor prognosis. Study Design: Vital Therapies’ study VT1-208 was conducted in subjects with AH, using an extracorporeal hepatocellular therapy system (ELAD) containing human C3A hepatoma cells, to determine if ELAD can increase survival in AH. C3A cells express acute phase response and immune-modulatory proteins and growth factors and may provide anti-inflammatory therapy and support hepatocellular function in early stages of AH. Inclusion/Exclusion Criteria: Subjects >18 yrs old with a clinical or histological diagnosis of AH, bilirubin >8mg/dl, Maddrey DF >32, MELD ≤35, platelets ≤40,000, and without severe concomitant disease, uncontrolled sepsis or bleeding, hemodynamic instability or need for chronic dialysis. Intervention: Subjects were randomized to either 3-5 days continuous ELAD therapy plus standard of care (SOC) or to SOC alone. Endpoint: Overall survival (OS) assessed by Kaplan-Meier analysis. Pre-specified subgroups included subjects with MELD and age ≥/< baseline median. Results: From 2013-2015, 203 subjects were enrolled (96 ELAD and 107 SOC), at 40 sites worldwide. Comparison of baseline characteristics showed no significant differences between groups and within subgroups, including treatment with steroids or pentoxifylline. There was no significant difference in serious adverse events between groups and no unexpected serious adverse events were related to the cellular component. In an intent-to-treat (ITT) analysis, there was no significant difference in OS (52.1% vs 52.3%). Subgroup analysis showed strong trends toward improved OS in groups in which MELD or age were lower than baseline medians. The majority of subjects (n=120) presented with MELD <28 and in this group, ELAD was associated with a trend toward higher OS (71% vs 57%, p=0.077). A similar trend was seen in younger subjects (n=101) (67% vs 55%, p=0.167). Although not pre-specified, survival in subjects with a combination of MELD and age ≤ than baseline median (n=59) was significantly better in ELAD than SOC (100% vs 73%, p=0.006) at 91 days. After 100 days, survival was fairly stable in all subject groups. Conclusion: There was no difference in OS between ELAD and SOC but there was a trend toward survival benefit in patients with MELD <28 or age <47 years. These data suggest ELAD may be a favorable AH treatment modality in younger patients with sufficient renal function and less severe coagulopathy. A study to confirm the survival benefit in this population is in preparation and is scheduled to start in 2016.

Disclosures:
Julie A. Thompson - Consulting: Vital therapies
David J. Reich - Consulting: VTI; Grant/Research Support: VTI; Speaking and Teaching: neuwave
Tarek I. Hassanein - Advisory Committees or Review Panels: AbbVie Pharmaceuticals, Bristol-Myers Squibb; Grant/Research Support: AbbVie Pharmaceuticals, Otslon, Bristol-Myers Squibb, Etaisi Pharmaceuticals, Gilead Sciences, Merck Sharp & Dohme, NGM BioPharmaceuticals, Ocera Therapeutics, Salix Pharmaceuticals, Sunside, TaiGen Biotechnology; Vital Therapies; Tabria, Shinogi & Co. Ltd, Us Jolla Pharmaceuticals, Contatus Pharmaceuticals; Speaking and Teaching: Baxter, Bristol-Myers Squibb, Gilead Sciences, Salix Pharmaceuticals, AbbVie Pharmaceuticals
Jan Stange - Consulting: Vital Therapies Inc.; Stock Shareholder: Albute c GmbH

A Phase 3 Double-Blind Placebo-Controlled Evaluation of Sofosbuvir/Velpatasvir Fixed Dose Combination for 12 Weeks in Naïve and Experienced Genotype 1, 2, 4, 5, 6 HCV Infected Patients with and without cirrhosis: Results of the ASTRAL-1 Study

Jordan J. Feld, Kosh Agarwal, Christophe Hezode, Tarik Asselah, Peter J. Ruane, Norbert Gruner, Armand Abergel, Alessandra Mangia, Ching-Lung Lai, Henry Li-Kuen Chan, Francesco Mazzotta, Christophe Moreno, Eric M. Yashida, Stephen Shafran, William J. Towner, Tram T. Tran, Yanni Zou, Evgeniya S. Svarovskaia, John McNally, Ana Osinusi, Diana M. Brainard, John G. McElrath, Ira M. Jacobson, Stefan Zeuzem, Toronto Western Hospital Liver Centre, Toronto, ON, Canada; 2. Institute of Liver Studies, Kings College Hospital, London, United Kingdom; 3. Hospital Henri Mondor, Université Paris Est, Créteil, France; 4. Beaujon Hospital, University Paris Diderot, INSERM UMR 1149, Paris, France; 5. Ruane Medical and Liver Health Institute, Los Angeles, CA; 6. Ludwig-Maximilians-University, Munich, Germany; 7. CHU Estaing, Unité Mixte de Recherche Université d’Auvergne, Clermont Ferrand, France; 8. Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy; 9. University of Hong Kong, Hong Kong, Hong Kong; 10. The Chinese University of Hong Kong, Hong Kong, Hong Kong; 11. Santa Maria Annunziata Hospital, Firenze, Italy; 12. CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium; 13. University of British Columbia, Vancouver, BC, Canada; 14. University of Alberta, Edmonton, AB, Canada; 15. Southern California Permanente Medical Group, Los Angeles, CA; 16. Cedars-Sinai Medical Center, Los Angeles, CA; 17. Gilead Sciences, Inc., Foster City, CA; 18. Mount Sinai Beth Israel Medical Center, New York, NY; 19. Johann Wolfgang Goethe University Medical Center, Frankfurt, Germany

Introduction: Velpatasvir (VEL, GS-5816) is a pangenotypic HCV NS5A inhibitor. In Phase 2 studies, the combination of sofosbuvir (SOF) and VEL for 12 weeks resulted in high SVR12 in patients with genotype 1-6 HCV infection. This Phase 3 study evaluated treatment with a fixed dose combination of SOF/VEL for 12 weeks in patients with genotype 1, 2, 4, 5, or 6 HCV infection (ClinicalTrials.gov Identifier: NCT02201940). Methods: Patients with genotype 1, 2, 4, or 6 chronic HCV infection were randomized 5:1 to received SOF/VEL (400 mg /100 mg daily) or placebo for 12 weeks. Patients with genotype 5 infection were enrolled to the SOF/VEL treatment group. Patients with genotype 3 infection were evaluated in a separate study. The primary efficacy analysis was an evaluation of the superiority of SVR12 for the SOF/VEL-treated patients to a pre-specified SVR12 goal of 85%. Secondary endpoints included safety/tolerability, resistance, and additional efficacy outcomes. Results: 740 patients were enrolled at 81 sites in North America, Europe and Hong Kong: 60% male, 79% white, 30% IL28B CC genotype, 32% treatment-experienced (TE), and 19% compensated cirrhosis. Of the 624 patients treated with SOF/VEL, the genotype distribution was 53% GT1, 17% GT2, 19% GT4, 6% GT5 and 7% GT6. Overall SVR12 for SOF/VEL-treated patients was 99.0% (95% con-
Disclosures:
Jordan F. Feld - Advisory Committees or Review Panels: Merck, Janssen, Gilead, Abbvie, Theravance, Bristol-Myers Squibb; Grant/Research Support: Abbvie, Boehringer Ingelheim, Janssen, Gilead, Merck
Kash Agarwal - Advisory Committees or Review Panels: Gilead Sciences, BMS, Novartis, Janssen, Abbvie; Consulting: MSD, Janssen, Achillion; Grant/Research Support: Roche, Gilead, BMS; Speaking and Teaching: Astellas, Gilead, BMS, GSK
Christophe Hezode - Speaking and Teaching: Roche, BMS, MSD, Janssen, abbvie, Gilead
Tarik Asselah - Advisory Committees or Review Panels: Abbvie, Merck, Gilead, BMS, Roche, Janssen
Peter J. Ruane - Advisory Committees or Review Panels: BMS; Consulting: Gilead, Abbvie, Janssen; Grant/Research Support: BMS, Gilead, Merck, Abbvie, Idexin, Idexin, Janssen, ViiV; Speaking and Teaching: Merck, Abbvie, Abbvie, Janssen; Stock Shareholder: Gilead, Gilead
Alessandra Mangia - Advisory Committees or Review Panels: Shering-Plough ROCHE, Shering-Plough, MSD, Boehringer, BMS; Board Membership: MSD; Grant/Research Support: Janssen, Janssen; Speaking and Teaching: ROCHE
Ching-Lung Lai - Advisory Committees or Review Panels: Bristol-Myers Squibb, Gilead Sciences Inc; Consulting: Bristol-Myers Squibb, Gilead Sciences, Inc; Speaking and Teaching: Bristol-Myers Squibb, Gilead Sciences Inc; GK
Henry LiK-Yuen Chan - Advisory Committees or Review Panels: Gilead, MSD, Bristol-Myers Squibb, Roche, Novartis Pharmaceutical, Abbvie; Speaking and Teaching: EchoChes
Christophe Moreno - Consulting: Abbvie, Janssen, Gilead, BMS; Grant/Research Support: Janssen, Gilead, Roche, Astellas
Stephen Shafran - Advisory Committees or Review Panels: Bristol-Myers Squibb, Gilead Sciences, Merck, Grant/Research Support: Abbvie, Bristol-Myers Squibb, Gilead Sciences, Janssen, Merck
William J. Towner - Grant/Research Support: Gilead, Pfizer, ViiV, Merck, BMS
Tram T. Tran - Advisory Committees or Review Panels: Gilead, Bristol-Myers Squibb; Consulting: Abbvie, ViiV, Janssen; Grant/Research Support: Bristol-Myers Squibb; Speaking and Teaching: Gilead Sciences, Janssen
Yanni Zhu - Employment: Gilead Sciences, Inc.; Stock Shareholder: Gilead Sciences, Inc
Evgenia S. Svarovskaia - Employment: Gilead Sciences Inc; Stock Shareholder: Gilead Sciences, Inc
John McNally - Employment: Gilead Sciences, Inc; Stock Shareholder: Gilead Sciences, Inc

LB-3
All-Oral Treatment With Daclatasvir (DCV) Plus Sofosbuvir (SOF) Plus Ribavirin (RBV) for 12 or 16 Weeks in HCV Genotype (GT) 3-Infected Patients With Advanced Fibrosis or Cirrhosis: The ALLY-3+ Phase 3 Study

Vincent Leroy1, Peter W. Angus2, Jean-Pierre Bronowicki3, Gregory Dore4, Christophe Hezode5, Stephen Pianko6, Stanislas Pol7, Katharine A. Stuart8, Edmund Tse9, Fiona McHee10, Raffa Borhe1, Maria Jesus Jimenez Exposito11, Alex J. Thompson12, 1CHU de Grenoble, La Tronche, France; 2Austin Hospital, Heidelberg, VIC, Australia; 3CHU Nancy & Lorraine University, Nancy, France; 4St Vincent’s Hospital and Kirby Institute, Sydney, NSW, Australia; 5CHU Henri Mondor, Creteil, France; 6Monash Medical Centre, Clayton, SA, Australia; 7Hopital Cochin, Paris, France; 8Gallopill Medical Research Foundation, Greenslopes, QLD, Australia; 9Royal Adelaide Hospital, Adelaide, SA, Australia; 10Bristol-Myers Squibb, Wallingford, CT; 11Bristol-Myers Squibb, Princeton, NJ

Background: HCV GT3-infected patients are a challenging population in urgent need of optimally effective therapies. In a previous study in GT3 infection (ALLY-3), 12 weeks of DCV (pangenotypic NS5A inhibitor) plus SOF (nucleoside NS5B inhibitor) achieved 96% sustained virologic response at post-treatment week 12 (SVR12) in patients without cirrhosis and 63% in patients with cirrhosis. In ALLY-3+, the efficacy and safety of DCV+SOF with RBV for 12 vs 16 weeks were evaluated in HCV GT3 patients with compensated advanced fibrosis or cirrhosis. Methods: Open-label, phase 3b study in HCV GT3-infected treatment-naive or –experienced patients with compensated advanced fibrosis or cirrhosis. Patients were randomized 1:1 to receive 12 weeks vs 16 weeks of DCV (60 mg QD) + SOF (400 mg QD) + RBV (weight based), stratified by advanced fibrosis or cirrhosis status. An interim analysis of efficacy (SVR at post-treatment week 4 [SVR4]) and safety outcomes is reported. SVR12 (primary endpoint) data will be available for presentation. Results: 50 patients were treated [12 weeks, 24; 16 weeks, 26]. Most were male (80%), white (98%), and treatment experienced (74%; 10% prior relapse on SOF+RBV); 72% had cirrhosis and 52% had HCV RNA ≥6 million IU/mL. Baseline characteristics were comparable between arms. Overall SVR4 by intention-to-treat analysis was 92%. In the 12- and 16-week arms, SVR4 was 88% and 96%, respectively. In the 12-week arm SVR4 was 83% in those with cirrhosis and 100% in those with advanced fibrosis; in the 16-week arm SVR4 was 94%, and 100%, respectively (Table). There were no virologic breakthroughs. Relapse occurred in 3 patients [1 in 16-week and 2 in 12-week arm]. Four of 5 patients (80%) with prior relapse on SOF+RBV achieved SVR4. There was 1 death [12-week arm; not treatment-related]. Treatment was well tolerated – the most common adverse events (AEs) were insomnia (30%), fatigue (26%) and headache (24%). One patient had a grade 3 hemoglobin reduction. There were no discontinuations due to AEs or treatment-related serious AEs. Conclusion: DCV+SOF+RBV for 12 or 16 weeks achieved high SVR4 rates of 88% and 96%, respectively, in HCV GT3-infected patients with advanced fibrosis or cirrhosis.
compensated advanced fibrosis or cirrhosis, and was generally safe and well tolerated.

<table>
<thead>
<tr>
<th>n (%)</th>
<th>12 weeks</th>
<th>16 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=24</td>
<td>n=26</td>
</tr>
<tr>
<td>SVR4*</td>
<td>21 (88)</td>
<td>25 (96)</td>
</tr>
<tr>
<td>in advanced fibrosis b</td>
<td>6/6 (100)</td>
<td>8/8 (100)</td>
</tr>
<tr>
<td>in cirrhosis b</td>
<td>15/18 (83)</td>
<td>17/18 (94)</td>
</tr>
<tr>
<td>Virologic breakthrough</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Relapse</td>
<td>2 (8)</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Death c</td>
<td>1 (4)</td>
<td>0</td>
</tr>
</tbody>
</table>

* HCV RNA <LOQ limit (n=24) of 92 IU/mL.

b Not related to treatment.

Conclusions: To our knowledge, this is the largest genotype-4 clinical trial in HCV gt-4 patients. Treatment with RDV+SOF+RBV has been well-tolerated and shows high sustained response rates in a large population of Egyptian genotype-4 patients, regardless of previous treatment status or underlying cirrhosis.

Disclosures: Vinicio Lery - Board Membership: Abbvie, BMS, Gilead; Consulting: Janssen, MSD; Speaking and Teaching: Abbvie, BMS, Gilead, Janssen, MSD

Peter W. Angus - Advisory Committees or Review Panels: Gilead Sciences, BMS; Grant/Research Support: Gilead Sciences

Jean-Pierre Bronowicki - Consulting: Merck, Janssen, Boehringer Ingelheim, Gilead, BMS, Novartis, GSK, Merck, Janssen, Boehringer Ingelheim, Gilead, BMS, Bayer, Novartis, GSK, ABBVIE, ABBVIE; Speaking and Teaching: Roche, Merck, Janssen, BMS, Bayer, Roche, Merck, Janssen, BMS, BAYER, ABBVIE

Gregory Dore - Board Membership: Gilead, Merck, AbbVie, Bristol-Myers Squibb; Speaking and Teaching: Roche, BMS, Merck, AbbVie, Bristol-Myers Squibb

Christophe Hezode - Speaking and Teaching: Roche, BMS, MSD, Janssen, Abbvie, Gilead

Stephen Planko - Advisory Committees or Review Panels: Roche, Novartis, GILD-EL, Roche, Novartis; Consulting: GILEAD; Speaking and Teaching: JANSSEN

Stanislas Pol - Board Membership: Sanofi, Bristol-Myers-Squibb, Boehringer Ingelheim, Tiba-Tobec, Filsan Cilag, Gilead, Glaxo Smith Kline, Roche, MSD, Novartis; Grant/Research Support: Glaxo Smith Kline, Gilead, Roche, MSD, Speaking and Teaching: Sanofi, Bristol-Myers-Squibb, Boehringer Ingelheim, Tiba-Tobec, Janssen Cilag, Gilead, Glaxo Smith Kline, Roche, MSD, Novartis

Fiona McPhee - Employment: Bristol-Myers Squibb

Maria Jesus Jimenez Exposito - Employment: Bristol-Myers Squibb

Alex J. Thompson - Advisory Committees or Review Panels: Gilead, Abbvie, BMS, Merck, Spring Bank Pharmaceuticals, Arrowhead, Roche; Grant/Research Support: Gilead, Abbvie, BMS, Merck; Speaking and Teaching: Roche, Gilead, Abbvie, BMS

The following people have nothing to disclose: Katherine A. Stuart, Edmund Tse, Rafia Bhore

LB-4

High Virologic Response Rate in Egyptian HCV Genotype-4 Patients Treated with Ravidasvir (PPI-668) and Sofosbuvir: Results of a Large Multicenter Phase 3 Registration Trial

Gamal Elsam1, Maissa El Raziky1,2, Asmaa Gomaa3, Tamer Elbaz1, Mahmoud M. Abouelkhair1, Alyaa Sabry1, Hadeel Gamal El Deen1, Mohamed K. Ashour1,2, Mohammed Abdel-Hamid1, Ola Nada3, Sherine Helmy4, Hanaa Abdel-Maguid4, Richard Colonno5, Nathaniel Brown5, Eric Ruby5, Pamela Vig5, Imam Waked1,2,3, Imam Waked - Advisory Committees or Review Panels: Janssen, Speaking and Teaching: Hoffman L Roche, Merck, BMS, Gilead, Abbvie

The following people have nothing to disclose: Gamal Elsam, Maissa El Raziky, Asmaa Gomaa, Tamer Elbaz, Mahmoud M. Abouelkhair, Alyaa Sabry, Hadeel Gamal El Deen, Mohamed K. Ashour, Mohammed Abdel-Hamid, Ola Nada

BACKGROUND: Egypt has the highest prevalence of hepatitis C infection in the world, of which 90% is due to HCV genotype-4 (gt-4). Increasing HCV-related morbidity in Egypt presents an urgent need for highly curative, safe and affordable therapies. We report results from a Phase 3 registration trial in Egyptian HCV gt-4 patients, assessing the combination of ravidasvir (RDV), a pan-genotypic HCV NS5A inhibitor, and sofosbuvir (SOF), a nucleotide HCV NS5B polymerase inhibitor, with or without ribavirin (RBV).

METHODS: Key inclusion criteria were age 18-65 yr, HCV gt-4 infection, serum HCV RNA >4 log10 IU/mL, and absence of compensated cirrhosis or other causes of liver disease. Patients were enrolled into 3 groups: treatment-naive non-cirrhotic and cirrhotic, by FibroScan & FIB-4 score (Group 1); interferon (IFN)-experienced non-cirrhotic (Group 2); and IFN-experienced cirrhotic (Group 3). Groups 1 and 2 were treated with RDV 200 mg QD + SOF 400 mg QD for 12 wk, randomized 1:1 to additional RBV (weight-based) or no RBV. Group 3 patients all received RDV+SOF+RBV and were randomized 1:1 to 12 wk vs. 16 wk of treatment. The primary endpoint is sustained virologic response (SVR), defined as serum HCV RNA below the lower limit of detection (LLD <12 IU/mL by the Abbott Real-Time™ PCR assay) at 12 wk post-treatment (SVR12).

RESULTS: This study is fully enrolled with 300 patients (150 in Group 1, 80 in Group 2, and 70 in Group 3); 284 patients had completed treatment at the time of this abstract. Study treatment has been generally well tolerated, with one serious adverse event possibly attributed to study drug (transient episode of symptomatic bradycardia). The most common adverse events are headache and fatigue. HCV RNA decreased by ~6 logs in all groups by Wk 1, with 94% of patients HCV RNA undetectable by Wk 4. Of the 265 patients who have reached 4 wk post-treatment, 262 (99%) had RNA <LLD (SVR4); also, 236 of 242 (98%) have achieved SVR8 and 176 of 182 (97%) have achieved SVR12 to date. The addition of RBV did not improve response. The 6 treatment failures are all cirrhotic patients, one patient had only 8 weeks of treatment due to the bradycardia episode, and 5 patients relapsed after completing treatment. None of the non-cirrhotic patients have experienced a virologic relapse. Near-final SVR4, SVR8 and SVR12 data will be presented during the meeting.

CONCLUSIONS: To our knowledge, this is the largest IFN-free clinical trial in HCV gt-4 patients. Treatment with RDV+SOF+RBV has been well-tolerated and shows high sustained response rates in a large population of Egyptian patients, regardless of previous treatment status or underlying cirrhosis.

Disclosures:

- Sherine Helmy - Board Membership: Presidio Pharmaceuticals; Stock Shareholder: Pharco Pharmaceuticals
- Hanaa Abdel-Maguid - Employment: Pharco Pharmaceuticals
- Richard Colonne - Employment: Presidio Pharmaceuticals
- Nathaniel Brown - Consulting: Presidio Pharmaceuticals; Employment: Novira Therapeutics
- Eric Ruby - Employment: Presidio Pharmaceuticals
- Pamela Vig - Stock Shareholder: Presidio Pharmaceuticals Inc
- Imam Waked - Advisory Committees or Review Panels: Janssen, Speaking and Teaching: Hoffman L Roche, Merck, BMS, Gilead, Abbvie
Incidence and Determinants of Denial of DAA Treatment for Chronic HCV Infection by Insurance Type During the First 6 Months of the Modern HCV Treatment Era

Vincent Lo Re 1, Charitha Gowda 1, Paul N. Urick 2, Josh Halladay 2, Amanda Binkley 2, Dena M. Carbonari 1, Kathryn Battista 2, Cassandra Peleckis 2, Jody Gilmore 1, Jason Roy 1, K. Rajender Reddy 1, Jay Kostman 2, 1Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; 2Burmans Specialty Pharmacy, Media, PA; 3Jonathan Lax Treatment Center, Philadelphia FIGHT, Philadelphia, PA

Background: The high costs of direct-acting antiviral (DAA) agents to treat chronic HCV infection have resulted in denials and delays in the receipt of these therapies. We sought to: 1) determine the incidence and determinants of denial of a DAA prescription among US chronic HCV-infected patients, according to type of insurance (US Medicaid, US Medicare, commercial insurance), and 2) ascertain the time to DAA prescription fill. Methods: We conducted a prospective cohort study among chronic HCV-infected patients who had a DAA prescription submitted between November 1, 2014 and April 30, 2015 to two specialty pharmacies (Burmans Specialty Pharmacy and Penn Presbyterian Medical Center) serving PA, NJ, DE, and MD. The incidence of absolute denial of the prescription, defined as no fill (even after appeal), was calculated for the overall cohort and by insurance type. Multivariable logistic regression was used to determine adjusted odds ratios (ORs) with 95% confidence intervals (CIs) for associations between patient characteristics and absolute denial. Hypothesized determinants of absolute denial included insurance type, absence of cirrhosis, and HIV coinfected. For all approved prescriptions, we determined the time to fill, defined as the interval between the date of prescription and date of approval, by type of insurance. Results: Among 2,350 patients prescribed a DAA regimen (504 covered by Medicaid; 810 by Medicare; 1,036 by commercial insurance), 375 (16.0%) received an absolute denial (genotype 1: 15.2%; genotype 2: 17.7%; genotype 3: 31.6%; p<0.001). The most common reasons for absolute denial were insufficient information to assess medical need (133 [35.5%]), lack of medical necessity (125 [33.3%]), and positive alcohol/drug screen (15 [4.0%]). Prescriptions were more commonly denied for patients covered by Medicaid (232 [46.0%]) than by Medicare (40 [4.9%]; p<0.001) or commercial insurance (103 [9.9%]; p<0.001). Among the overall cohort, Medicaid coverage (OR=8.97 [6.46-12.44]), absence of cirrhosis (OR=3.70 [2.48-5.52]), and HIV coinfected (OR=3.31 [1.28-8.56]) were independently associated with absolute denial. The median time to DAA prescription fill was longer for persons with Medicaid (23 days) than with Medicare (14 days; p<0.001) or commercial insurance (14 days; p<0.001). Conclusions: Among chronic HCV-infected patients prescribed DAA therapy, 16% were denied by their insurance carrier. For Medicaid patients, 46% were denied DAA therapy, and they had a longer time to fill than those with other insurance. Medicaid programs should seek to increase access to DAA agents for chronic HCV-infected patients.

Disclosures:
Dena M. Carbonari - Grant/Research Support: AstraZeneca
K. Rajender Reddy - Advisory Committees or Review Panels: Merck, Janssen, Vertex, Gilead, BMS, Abbvie, Grant/Research Support: Merck, BMS, Ikaria, Gilead, Janssen, AbbVie
Jay Kostman - Consulting: Gilead
The following people have nothing to disclose: Vincent Lo Re, Charitha Gowda, Paul N. Urick, Josh Halladay, Amanda Binkley, Kathryn Battista, Cassandra Peleckis, Jody Gilmore, Jason Roy

Emricasan (IDN-6556) administered orally for 28 days lowers portal pressure in patients with compensated cirrhosis and severe portal hypertension

Guadalupe Garcia-Tsao 1,2, Michael Fuchs 3, Mitchell L. Shiffman 4, Jean L. Chan 5, Mark Morris 5, Mason Yamashita 5, Alfred P. Spada 2, David Hagerty 4, Jaime Bosch 6, 1VA-CT Healthcare System, New Haven, CT; 2Yale University, New Haven, CT; 3McGuire DVAMC, Richmond, VA; 4Liver Institute of Virginia, Richmond, VA; 5Conatus Pharmaceuticals, San Diego, CA; 6Liver Unit, Hospital Clinic-IDIBAPS, University of Barcelona, Barcelona, Spain

Caspases play a central role in apoptosis and inflammation. They produce hemodynamically-active, pro-inflammatory microparticles that appear to contribute to the vasodilatation that maintains and enhances portal hypertension in cirrhosis. Emricasan, a pan-caspase inhibitor, has been shown to lower portal pressure and improve survival in a murine model of portal hypertension. The aim of this study was to assess whether emricasan could lower portal pressure in patients with compensated cirrhosis. Methods: This proof-of-concept, multicenter, open-label study enrolled 23 subjects with compensated cirrhosis and portal hypertension (hepatic venous pressure gradient [HVPG] >5 mmHg) at 9 U.S. sites. Emricasan (25 mg) was given orally twice a day for 28 days. HVPG measurements were standardized and a single expert read all HVPG tracings. Results: Median age of subjects was 59 (range 49-80) and 70% were male. Cirrhosis etiologies were mainly NASH and HCV, with 20 (87%) subjects being Child A and having median MELD score of 8 (range 6-15). 22 completed the study. Overall, there were no significant differences in median HVPG before and after emricasan (13.5 vs 13.0 mmHg, respectively). However, when patients were stratified by the recognized HVPG therapeutic threshold of 12 mmHg (indicative of more severe portal hypertension), a significant (p<0.003) decrease in HVPG by 17.2% was noted only in those with an HVPG ≥12 mmHg, who had a mean (SD) decrease of 3.7 (4.0) mmHg. Notably, 4/12 had a ≥20% decrease; 8/12 had a ≥10% decrease; and in 2/12 the HVPG decreased below 12 mmHg. Ten patients with HVPG <12 mmHg had a non-significant (p=0.12) mean (SD) increase of 1.9 (3.2) mmHg. Sensitivity analysis using an HVPG cutoff of 10 mmHg yielded similar results. There were no significant changes in blood pressure or heart rate. AST and ALT levels decreased significantly in the entire group and in those with an HVPG ≥12 mmHg. Overall, serum levels of cCK18 and caspase 3/7 (markers of microparticles and apoptosis, respectively) decreased significantly. Emricasan was well-tolerated with 1 subject discontinuing the study early for non-serious adverse events. One subject had 3 SAEs 10 days after the last emricasan dose, assessed as unrelated to treatment. Conclusion: Emricasan administered orally for 28 days was associated with a significant decrease in portal pressure in patients with compensated cirrhosis and severe portal hypertension. Although a hemodynamic mechanism cannot be ruled out, concomitant decreases in AST/ALT suggest an intrahepatic anti-inflammatory effect. Potential additional long-term effects due to microvascular remodeling will require further investigation.

Disclosures:
Guadalupe Garcia-Tsao - Advisory Committees or Review Panels: Abbvie, Fibrogen
Mitchell L. Shiffman - Advisory Committees or Review Panels: Merck, Gilead, Boehringer-Ingelheim, Bristol-Myers-Squibb, Abbvie, Janssen, AstraZeneca; Consulting: Roche/Genentech; Grant/Research Support: Merck, Gilead, Boehringer-Ingelheim, Bristol-Myers-Squibb, Abbvie, Beckman-Coulter, Achillion, Lumena, Intercept, Novartis, Gen-Probe; Speaking and Teaching: Roche/Genentech, Merck, Gilead, Abbvie, Janssen, Bayer
Jean L. Chan - Employment: Conatus Pharmaceuticals
Microfluidic liver cultures as preclinical tool for the study of hepatitis B and C virus as well as malaria

Ana M. Ortega-Prieto1, Sann Nu Wai1, Emma M. Large2, Marion Lussignol3, Fiona Angrisano4, Andrew M. Blagborough5, Gema Vizcay-Barrena5, David Hughes2, Graham Cooke1, Mark R. Thursz1, Roland Fleck5, Jake Baum4, Maria Teresa Catanese3, Marcus Dorner1; 1Medicine, Imperial College London, London, United Kingdom; 2CN Bio Innovations Ltd, Welwyn Garden City, United Kingdom; 3Infectious Diseases, King’s College London, London, United Kingdom; 4Life Sciences, Imperial College London, London, United Kingdom; 5Centre for Ultrastructural Imaging, King’s College London, London, United Kingdom

Liver-tropic pathogens including hepatitis B virus (HBV), hepatitis C virus (HCV) and malaria are a major health concern with more than 620 million people infected worldwide. The rapid de-differentiation of primary human hepatocytes in 2D cell culture poses significant limitations to study host-pathogen interactions and to develop novel therapies against these infectious diseases in physiological settings. Here, we describe a novel 3D microfluidic primary hepatocyte culture system permissive to HCV, HBV and malaria, which, in contrast to all other available model systems, maintains the hepatic phenotype for at least 40 days without alteration of hepatic metabolism, cell viability or degree of differentiation. Cells form functional microtissues including bile canaliculi and tight junctions. We demonstrate, for the first time, that HBV patient-derived viral isolates can successfully launch infection and maintain robust levels of replication, resulting in the production of HBV cccDNA as well as infectious progeny virus. Additionally, 3D hepatocyte cultures become susceptible to non-JFH1-derived HCV including genotype 1a patient samples. We demonstrate proof of concept data for the evaluation of novel direct-acting antivirals against HCV, including Ledipasvir and Sofosbuvir for genotypes 1 and 3 as well as Tenofovir alafenamide for HBeAg-positive and –negative HBV isolates. HBV infection induces a pro-angiogenic signature in infected hepatocytes, which is suppressed when co-culturing primary hepatocytes and Kupffer cells. Interestingly, we identify a cellular factor induced by HBV infection, which may be responsible for inactivation of Kupffer cells and the resulting lack of pro-inflammatory responses. Finally, using hepatocyte and erythrocyte co-cultures we show that malaria sporozoites can successfully invade hepatocytes, differentiate to merozoites and transition from liver to blood stage. This platform offers the unique opportunity to evaluate novel drug candidates targeting HBV cccDNA maintenance as well as the malaria liver stage, dissect host/pathogen interactions in multicellular immune networks as well as serve as a personalised medicine platform for the prediction of treatment outcomes for HCV and HBV.
Genetic Variation rs16937012 Interacts with the NCOA2 Gene Predicts Sustained Response to Interferon in Chronic Hepatitis B Patients: the GIANT-B Study

Willem Pieter Brouwer1, Matthew Kawgier2, Pisis Tangkiyivanich3, Henry Li-Yuen Chan4, Jinlin Hou5, Pietro Lamportico6, Henk Reesink7, Wen Hong Zhang8, Alessandra Mangia9, Tawesak Tanwondee10, Krzysztof Simon11, Necati Örmeci12, Polske Reesink13, Chen Liang14, Fehmi Tabak15, Fulya Gunsar16, Robert Flisik17, Peter Ferenc18, Meral Akgogan19, Filiz Akyuz20, Nattiya Hiranankarn21, Louis Jansen22, Vincent W. Wong23, Xieer Liang24, Shalom Chen25, Zwier M. Groothuis26, Jerzy Jaroszewicz27, Resat Ozaros28, Karin Kozbial29, Watcharasak Chatiyaputta30, Xun Qi31, Rozita Razavi32, Monika Pazgan-Simon33, Erkin Oztas34, Mayur Brahmania35, Elke Verhey36, Jian Sun37, Bettina E. Hansen38, Andre Boonstra39, Harry L. Janssen40,1; 1Gastroenterology & Hepatology, Eramus Medical Center Rotterdam, Rotterdam, Netherlands; 2Liver Clinic, University Health Network, Toronto, ON, Canada; 3Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; 4Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong; 5Hepatology Unit and Department of Infectious Diseases, Nanhong Hospital, Southern Medical University, Guangzhou, China; 6University of Milan, IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy; 7Academic Medical Centre, Amsterdam, Netherlands; 8Clinical Center Hepatitis, Institute of Biomedical Science, Warsaw, Poland; 9Division of Gastroenterology, Department of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand; 10Poulnichino Universitario, Internal Medicine, Palermo, Italy; 11Wrocław University of Medicine, Department of Infectious Diseases and Hepatology, Wrocław, Poland; 12University of Ankara, Medical School, Ankara, Turkey; 13Shanghai Public Health Center “Fu Dan University”, Shanghai, China; 14RRCSS Casa Solitio della Sofferenza, Foggia, Italy; 15Division of Gastroenterology, Department of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand; 16Poulnichino Universitario, Internal Medicine, Palermo, Italy; 17Ege University Medical School, Izmir, Turkey; 18Wojewódzki Szpital Specjalistyczny, Białystok, Poland; 19Medical University of Vienna, Vienna, Austria; 20Yuksek Ihtisas Hospital, Ankara, Turkey; 21Istanbul Universitesi Istanbul Tip Fakültesi Hastanesi, Istanbul, Turkey

Background & aims. Peginterferon (PegIFN) therapy leads to response in only a subset of chronic hepatitis B (CHB) patients at the cost of significant side-effects. The identification of host genetic determinants of response are therefore in demand. Methods. In this investigator-initiated multicentre two-stage genome-wide association study, CHB patients treated with PegIFN for at least 12 weeks and nucleoside analogues within randomized controlled trials or as standard of care were recruited at 22 centres from Europe, Asia and North America. Patients were genotyped for >713,014 single-nucleotide polymorphisms (SNPs). Response was studied at 24 weeks and defined as a combined HBeAg loss with HBV DNA <2,000 IU/mL, or an HBV DNA <2,000 IU/mL for HBeAg negative patients. Patients with missing outcome or those who were re-treated after PegIFN cessation were classified as non-responders. Both a discovery and a replication cohort were constructed. Here we report on the first results for the discovery cohort. Results. Of 1085 patients in the discovery cohort, 778 (72%) were male, and mean age was 38.8 (±10.9) years. Patients were Caucasian in 35% (n=375), Asian in 62% (n=671) and African in 3% (n=35). Of Caucasians and Asian patients, 27% and 66% were HBeAg-positive, respectively. In total, 287 (27%) patients achieved the primary response (17% with HBSAg loss), of which 60 (21%) were Caucasian and 217 (76%) Asian. Adjusted for age, gender and 4 ancestry principal components, SNP rs16937012 located upstream of the NCOA2 gene region on chromosome 8 showed a suggestive association (OR=3.99, p=1.4x10^-6, minor allele frequency 0.125) in Caucasians. Five other SNPs in this gene region had p-value less than 1.0x10^-4, including coding SNP rs1460680 in NCOA2. The association remained after additional adjustment for baseline HBeAg status, HBV DNA, ALT and the duration of IFN. These associations did not replicate in Asians (p>0.05 for all SNPs). In Asian patients, 2 SNPs showed a suggestive association (p-value <1.0x10^-4), which remained after multivariate adjustment. Conclusions: A novel protein coding gene was identified as a predictor of IFN treatment response in CHB. This gene belongs to the nuclear hormone receptor superfamilly which plays an important role in cell growth, development, and homeostasis by controlling expression of specific genes. This gene, and others, will be further investigated in a panel of imputed 1000 Genomes SNPs and in the replication cohort. Identification of novel genetic determinants for IFN treatment response has the potential to improve our understanding of new therapeutic options leading to functional cure of CHB.

Disclaimers:

Henry Li-Yuen Chan - Advisory Committees or Review Panels: Gilead, MSD, Bristol-Myers Squibb, Roche, Novartis Pharmaceutical, Abbvie; Speaking and Teaching: EchoChans

Jinlin Hou - Consulting: Roche, GSK, Novartis, BMS; Grant/Research Support: Roche, GSK, Novartis

Pietro Lamportico - Advisory Committees or Review Panels: Bayer, Bristol, Speaking and Teaching: Bristol-Myers Squibb, Roche, GlaxoSmithKline, Novartis, Gilead, Bristol-Myers Squibb, Roche, GlaxoSmithKline, Novartis, Gilead

Henk Reesink - Consulting: AbbVie, Abylalam, BMS, Gilead, Janssen-Cilag, Merck/ MSD, PRA-International, Regulus, Replicor, Roche, R-Pharm; Grant/Research Support: AbbVie, BMS, Boehringer Ingelheim, Gilead, Janssen-Cilag, Merck/ MSD, PRA-International, Regulus, Replicor, Roche

Tawesak Tanwondee - Grant/Research Support: BMS, MSD, Fibrogen, Biotron, Celcion

Krzysztof Simon - Advisory Committees or Review Panels: Roche, Gilead, Janssen; Speaking and Teaching: BMS, MSD, Bayer, AlfaWassermann

Necati Örmeci - Consulting: Roche, Roche, Roche, Roche

Robert Flisik - Advisory Committees or Review Panels: Gilead, Bristol, Speaking and Teaching: Bristol-Myers Squibb, Janssen, Merck, Roche, Abbvie; Consulting: Janssen, Bristol-Myers Squibb, Gilead, Merck, Abbvie; Grant/Research Support: Roche; Speaking and Teaching: Janssen, Roche, Bristol-Myers Squibb, Gilead, Merck, Abbvie

Peter Ferenc - Advisory Committees or Review Panels: Idenix, BMS, Janssen, Abbvie, BMS; Patent Held/Filed: Madaus Rotopharm; Speaking and Teaching: Gilead, Roche

Vincent W. Wong - Advisory Committees or Review Panels: Idenix, BMS, Janssen, Consulting: Merck, NovaMedica; Speaking and Teaching: Roche, Gilead, Abbott, MSD, BMS, Janssen

Jerzy Jaroszewicz - Consulting: Abbot, BMS; Speaking and Teaching: Roche, Gilead, Janssen, BMS, BMS, Janssen

Andre Boonstra - Grant/Research Support: BMS, Janssen Pharmaceuticals, Merck, Roche, Gilead

Harry L. Janssen - Consulting: AbbVie, Bristol Myers Squibb, GSK, Gilead Sciences, Innogenetics, Merck, Medtronic, Novartis, Roche, Janssen, Medimmune, ISIS Pharmaceuticals, Tekmira; Grant/Research Support: AbbVie, Bristol Myers Squibb, Gilead Sciences, Innogenetics, Merck, Medtronic, Novartis, Roche, Janssen, Medimmune

The following people have nothing to disclose: Willem Pieter Brouwer, Matthew Kawgier, Pisis Tangkiyivanich, Wen Hong Zhang, Alessandra Mangia, Giuseppe Montalto, Chen Liang, Fehmi Tabak, Fulya Gunsar, Meral Akgogan, Filiz Akyuz, Nattiya Hiranankarn, Louis Jansen, Xieer Liang, Shalom Chen, Zwier M. Groothuismink, Resat Ozaros, Karin Kozbial, Watcharasak Chatiyaputta, Xun Qi, Rozita Razavi, Monika Pazgan-Simon, Erkin Oztas, Mayur Brahmania, Elke Verhey, Jian Sun, Bettina E. Hansen

1384A AASLD ABSTRACTS HEPATOLOGY, December, 2015
LB-9

ARC-520 produces deep and durable knockdown of viral antigens and DNA in a phase II study in patients with chronic hepatitis B

Man-Fung Yuen1, Henry Lik-Yuen Chan2, Sze Hang Kevin Liu1, Bruce Given3, Thomas Schluep4, James Hamilton5, Ching-Lung Lai1, Stephen Locarnini4, Johnson Y. Lau5, Carla Ferrari6, Robert Gish7,8; 1The University of Hong Kong, Hong Kong, China; 2Arrowhead Research Corp., Pasadena, CA; 3Victorian Infectious Diseases Reference Laboratory, Melbourne, VIC, Australia; 4Hong Kong Polytechnic University, Hong Kong, China; 5University of Parma, Parma, Italy; 6Stanford University, Palo Alto, CA; 8Hepatitis B Foundation, Doylestown, PA

Chronic hepatitis B (CHB) has become an important target for drug development. ARC-520 (ARC), the first RNA interference-based drug to reach patients (pts), targets ccc-DNA-derived mRNA; herein we report results in CHB. **Methods:** 58 CHB pts (48 ARC, 10 placebo [PL], mean age 41 yrs [range 23-59] were included. 38 pts were HBeAg-neg and 20 HBeAg-pos. At entry, 32 of 38 HBeAg-neg and 14 of 20 HBeAg-pos had taken entecavir (ETV) for mean of 5 yrs (range 2-8) and were on ETV throughout the study. 12 treatment naive pts (6 HBeAg-neg, 6 HBeAg-pos) started on ETV during the trial. All pts received a single dose IV of ARC or PL (6 HBeAg-pos received a divided dose of ARC separated by 2 wks) and had viral parameter knockdown (KD) measured over 85 days [qHBSAg, HB core-related antigen [qHBcrAg] and viral DNA in all, qHBeAg in HBeAg-pos]. Doses were 1.4 mg/kg in HBeAg-neg. All HBeAg-pos received 4 mg/kg. 15 pts are continuing in follow-up. **Results:** ARC therapy was well tolerated - 23% reported a mild or mod adverse event (AE) with no AE rated serious, severe, drug-related or causing withdrawal from the trial. Viral DNA was below level of quantitation in all chronic ETV pts at study entry. Naïve pts reduced viral DNA up to 4.3 log (mean 2.2 log) after ARC and ETV. ARC reduced viral antigens with qHBeAg best KD of 1.7 log (mean max 1.2 log) following a single 4 mg/kg dose. In naïve pts, best qHBSAg KD of 1.9 log (mean max 1.1 log) in HBeAg-pos and 0.7 log (mean max 0.2 log) in HBeAg-neg were observed. qHBcrAg showed a dose response in HBeAg-neg with best KD at 1 mg/kg of 0.18 log (mean 0.15 log) and 1.1 log (mean max 0.9 log) with 4 mg/kg. HBeAg-pos showed best KD of 1.1 log (mean max 0.92 log). The qHBSAg dose response was less deep in chronic ETV pts with best observed reduction of 0.3 log (mean max 0.2 log) observed at 1 mg/kg vs 0.5 log (mean max 0.4 log) at 4 mg/kg in HBeAg-neg. Best qHBeAg KD in chronic ETV treated HBeAg-pos was 0.7 log (mean max 0.3 log). Divided doses at 4 mg/kg did not increase antigen KD. Duration of qHBSAg KD was typically 8 wks with 2 distinct KD patterns of qHBSAg seen: an immediate, direct ARC antiviral effect (~70% of pts) and a delayed response several weeks after treatment (~30% of pts). **Conclusions:** 1) These findings are consistent with more cccDNA-driven antigen production in HBeAg-pos. 2) ARC was well tolerated 3) ARC effectively inhibited cccDNA-derived mRNA with protein KD up to 1.9 logs (99%) observed. 4) These variations in viral protein KD are consistent with ARC data in chimps and previously reported chronic ETV reductions in pts for cccDNA 5) Chronic ARC studies aimed at producing HBSAg seroclearance are underway.

Disclosures:

LB-10

Phase 1b Efficacy and Safety of NVR 3-778, a First-In-Class HBV Core Inhibitor, in HBeAg-Positive Patients with Chronic HBV Infection

Man-Fung Yuen1, Dong Joon Kim2, Frank Weilert3, Henry Lik-Yuen Chan4, Jacob P. Lalezari5, Seong Gyu Hwang6, Tuan T. Nguyen7, Sandy Liaw8, Nathaniel Brown1, Klaus Klumpf1, Lalo Flores1, George D. Hartman1, Edward J. Gana1; 1Novira Therapeutics, Inc., Doylestown, PA; 2Auckland Clinical Studies, Auckland, New Zealand; 3Queen Mary Hospital, University of Hong Kong, Hong Kong, Hong Kong; 4Chuncheon Sacred Heart Hospital, Hallym University, Gangwon-do, Korea (the Republic of); 5Waikato Hospital, Hamilton, New Zealand; 6Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, Hong Kong; 7Quest Clinical Research, San Francisco, CA; 8CHA Bundang Medical Center, Gyeonggi-do, Korea (the Republic of); 9Research and Education, Inc., San Diego, CA

Background: Current therapies for chronic hepatitis B (CHB) can suppress HBV replication but long-term therapy is required in most patients. HBV Core capsid protein plays multiple roles in HBV persistence. NVR 3-778 is an HBV core inhibitor which can potentially inhibit viral assembly, HBV genome replication, cccDNA replenishment, and hepatic reinfecction cycles. We report clinical proof-of-concept data for NVR 3-778 from a multicenter Phase 1b trial in patients with CHB. **Methods:** Safety and efficacy were assessed in 4 dosing cohorts of adults with chronic HBV infection. Patients were 18-65 yrs., predominantly male, and HBeAg-positive with serum HBV DNA > 20,000 IU/mL. ALT levels could be normal or elevated to less than 7 times upper limit of normal. Patients were randomized to NVR 3-778 capsules (10 patients/cohort in first 2 cohorts, 8/cohort in last 2 cohorts) or placebo (2 patients/cohort) for 28 days. The first 3 cohorts received NVR 3-778 doses of 100, 200, or 400 mg QD, and the 4th cohort received 600 mg BD. Safety evaluations included adverse events (AEs) and safety-related clinical labs. **Results:** A total of 44 patients were enrolled in the 4 cohorts; 36 received active NVR 3-778 treatment. Safety and tolerability of NVR 3-778 were satisfactory for all cohorts, with no treatment-related discontinuations or serious adverse
events (SAEs). AEs and lab abnormalities were generally mild and not related to study drug. A patient in the 100 mg cohort developed a rash involving the hands and feet that was considered to be serious. No other study patients developed a significant rash. Small HBV DNA reductions were apparent with 200 mg and 400 mg QD dose cohorts. With tripling of the daily dose to 1200 mg (600 mg BD) the mean 28-day reduction in serum HBV DNA levels increased substantially to 1.72 log10 (range 1.06-3.71 log10 IU/mL). PK results indicated multi-micromolar concentrations of NVR 3-778 supporting QD or BD dosing, with dose-related increases in drug levels. The study is advancing to evaluation of a combination of NVR 3-778 and peg-interferon. A higher dose will be tested to define a maximal-effect dose for NVR 3-778, and a nucleoside combination regimen will be tested later. **Conclusions:** NVR 3-778 was well-tolerated in patients with CHB. 600 mg BD dosing achieved significant reductions in HBV DNA. When used alone or in combination with current HBV antivirals, NVR 3-778 may contribute substantial efficacy by unique Core-related mechanisms, toward a goal of increased durable response rates in HBV patients. **Disclosures:**

Henry LK Yuen Chan - Advisory Committees or Review Panels: Gilead, MSD, Bristol-Myers Squibb, Roche, Novartis Pharmaceutical, Abbvie; Speaking and Teaching: Echosens

Sandy Liaw - Employment: Novira Therapeutics

Nathaniel Brown - Consulting: Presidio Pharmaceuticals; Employment: Novira Therapeutics

Klaus Klumpp - Board Membership: Riboscience LLC; Employment: Novira Therapeutics

Lalo Flores - Employment: Novira Therapeutics

George D. Hartman - Management Position: Novira Therapeutics

Edward J. Gane - Advisory Committees or Review Panels: Novira, AbbVie, Janssen, Gilead Sciences, Janssen Cilag, Achillion, Merck, Tekmira; Speaking and Teaching: AbbVie, Gilead Sciences, Merck

The following people have nothing to disclose: Man-Fung Yuen, Dong Joen Kim, Frank Weilert, Jacob P. Lalezari, Seong Gyu Hwang, Tuan T. Nguyen

LB-11 Phase I/IIa study of TT-034, a DNA-directed RNA interference agent (ddRNAi) delivered as a single administration for the treatment of subjects with chronic hepatitis C virus (HCV)

David Suh1,2, Keyur Patel2, Georgania Kilfoil2, David L. Wyles4, Susanna Naggie2, Eric Lawitz5, Stephen Bradley6, Per Lindell1;

1Benitec Biopharma, Hayward, CA; 2Duke University School of Medicine, Durham, NC; 3Tacere Therapeutics, Hayward, CA; 4University of California San Diego, San Diego, CA; 5Texas Liver Institute, University of Texas Health Science Center, San Antonio, TX; 6Synteract HCR, Carlsbad, CA

Background: Designed to treat HCV, TT-034 is an RNAi therapeutic comprised of a recombinant DNA that is delivered intravenously using an Adeno-Associated Virus capsid (AAV8) for transduction of hepatocytes. Once inside, TT-034 uses the cell’s transcriptional machinery to drive long term expression of three independent short hairpin RNAs (shRNAs) to simultaneously target up to three well-conserved regions of the HCV RNA genome, including the 5’ UTR (shRNA6) and NS5B (shRNA19 and shRNA22). In non-human primate (NHP) studies, clinically relevant doses of TT-034 transduced nearly 100% of hepatocytes and resulted in persistent shRNA expression for 180 days (the length of the study). Intended as a one-time treatment, the dosing with TT-034 is the first time a non-withdrawable RNAi therapeutic has been used in man. **Methods:** This ongoing, first-in-man, Phase I/IIa open label dose-escalating trial is enrolling chronic HCV genotype 1 patients without cirrhosis. Patients receive a single intravenous infusion of TT-034 at one of 5 dose levels. A liver biopsy, collected 21 days post dosing, is used to assess hepatic TT-034 DNA levels and shRNA expression.

Results: To date, seven subjects have received a single dose of TT-034 at either 4.00E10, 1.25E11, or 4.00E11 vg/kg. Additional subjects will be enrolled in dose cohorts of 1.25E12 or 4.00E12 vg/kg. There have been no treatment-related SAEs in the study to date. Once administered, TT-034 clears from serum within the first week post dosing. No long term TT-034 shedding has been detected in the urine, stool, semen, or sputum. TT-034 DNA levels in liver biopsies are measured by QCR and are similar to those reported in NHP models. Patients administered the lowest dose resulted in 0.01 or 0.02 copies of the TT-034 genome per cell, the equivalent of 1 or 2 % hepatocyte transduction. At a dose of 1.25E11 vg/kg, substantially higher levels were detected in the hepatic tissues from the three subjects, yielding 0.48, 3.65 and 10.44 copies of TT-034 DNA per cell respectively. The first subject dosed with 4.00E11 vg/kg demonstrated 17.74 copies per cell, indicating that a significant portion of the hepatocytes may have been transduced. QPCR analyses of RNA isolated from the biopsies confirmed concomitant, dose dependent expression of anti-HCV shRNAs. Copy numbers of shRNA6, shRNA19 and shRNA22 were measured at 66, 2032, and 999 copies per cell respectively in the subject dosed with 4.00E11 vg/kg.

Conclusion: Initial doses of TT-034 are well tolerated in human subjects infected with HCV. At higher doses, substantial portions of hepatocytes are transduced and result in concurrent dose-dependent expression of anti-HCV shRNAs.

Disclosures:

David Suh - Advisory Committees or Review Panels: Regen BioPharma; Management Position: Benitec Biopharma

Keyur Patel - Advisory Committees or Review Panels: Gilead, BMS; Consulting: Benitec, Nitto Denko

Georgania Kilfoil - Employment: Benitec Biopharma

David L. Wyles - Advisory Committees or Review Panels: Bristol Myers Squibb, Janssen, Merck; Grant/Research Support: Gilead, Merck, Bristol Myers Squibb, AbbVie, Tacere

Susanna Naggie - Advisory Committees or Review Panels: BMS, Gilead, Abbvie, Merck; Grant/Research Support: Gilead, AbbVie, BMS, Janssen, Merck, Achillion

Eric Lawitz - Advisory Committees or Review Panels: AbbVie, Achillion Pharmaceuticals, Regulus, Theravance, Enanta, Idenix Pharmaceuticals, Janssen, Merck & Co, Novartis; Gilead; Grant/Research Support: AbbVie, Achillion Pharmaceuticals, Baehringer Ingelheim, Bristol-Myers Squibb, Gilead Sciences, GLAXOSMITHKLINE, Idenix Pharmaceuticals, Intercept Pharmaceuticals, Janssen, Merck & Co, Novartis, Nitto Denko, Theravance, Salix, Enanta; Speaking and Teaching: Gilead, Janssen, AbbVie, Bristol Meyers Squibb

Per Lindell - Consulting: Benitec Ltd, Tacere Inc; Employment: Novadigm Consulting Group

The following people have nothing to disclose: Stephen Bradley

LB-12 C-SWIFT Retreatment (Part B): 12 weeks of Elbasvir/Grazoprevir with Sofosbuvir and Ribavirin Successfully Treated GT1-infected Subjects who Failed Short-Duration All-Oral Therapy

Eric Lawitz2, Fred Poodrad2, Julio A. Gutierrez2, Jennifer T. Wells2, Carmen E. Landaverde2, Joseph R. Reiling1, Jerry J. Li1, Hsueh-cheng Huang1, Michael Robertson1, Janice Wahl1, Elav Barr1, Barbara A. Haber1, 1Merck & Co., Inc., Kenilworth, NJ; 2Texas Liver Institute, San Antonio, TX

PURPOSE: Therapies to retreat patients who have failed prior all-oral, direct-acting antiviral (DAA) therapies have not been defined. The purpose of this study was to assess a retreatment regimen for patients who had failed therapy with elbasvir/grazoprevir (EVR/GZR, a potent NS3/4A protease inhibitor + NS5A inhibitor fixed-dose combination) + sofosbuvir (SOF).
METHOD: G1-infected patients who relapsed after therapy with EBR/GZR + SOF for 4, 6 or 8 weeks were offered retreatment with 12 weeks of EBR/GZR + SOF + ribavirin (RBV). The primary endpoint was the proportion of patients achieving HCV RNA<15 IU/mL 12 weeks after end of treatment (SVR12). Population sequencing was used to detect resistance-associated variants (RAVs) in NS3, NS5A and NS5B. RESULTS: Of 29 eligible patients, 25 enrolled (17/20, 7/8 and 1/1 who failed prior 4, 6 or 8 weeks of treatment respectively): 88% (22/25) with G1 infection, 20% (5/25) with cirrhosis; baseline viral load at treatment mean 6.6 log10 IU/mL (range: 4.3-7.4 log10 IU/mL). Of the 22 G1a patients, 12 (55%), 15 (68%) or 0% failed with NS5A RAVs, NS3 RAVs or NS5B RAVs, respectively, in Part A. At the start of retreatment, 45% (10/22), 59% (13/22) or 0% of G1a patients had NS5A RAVs, NS3 RAVs, or NS5B RAVs, respectively. NS5A RAVs (>5-fold potency shift to EBR shown by underlining) included M28T (2/10), M28V (2/10), G30H/K/R (5/10), L31M (1/10), Y93H/N (3/10) while NS3 RAVs included V36M (1/22), G80K (12/22), S122G (2/22), D168E (1/22); >5-fold resistant to GZR, and I170V (1/22). No RAVs were present in the 3 G1b-infected patients. Two patients were lost to follow-up after Treatment Day 3 and Week 4 at which time viral load was 363 IU/mL and undetectable, respectively. All patients who completed treatment (100%, 23/23) achieved SVR4. Final SVR12 results will be presented. No patient discontinued due to AEs or laboratory abnormalities. The single AE occurring in >10% of patients was fatigue (12%). CONCLUSION: In a population of patients who failed short-duration therapy with DAA and were enriched for G1a infection and presence of NS3 and NS5A RAVs, inclusion of class RAVs, a 12 week regimen of GZR/EBR + SOF + RBV showed strong antiviral activity and high SVR4 rates.

<table>
<thead>
<tr>
<th>RAV Class present at start of retreatment</th>
<th>% (n) with HCV RNA<15 IU/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment Week</td>
<td>End of Treatment</td>
</tr>
<tr>
<td>No RAVs (n=13)</td>
<td>92% (12/13)</td>
</tr>
<tr>
<td>NS3 or NS5A RAVs (n=9)</td>
<td>67% (6/9)</td>
</tr>
<tr>
<td>NS3 and NS5A RAVs (n=3)</td>
<td>100% (3/3)</td>
</tr>
</tbody>
</table>

1: RAVs excluding Q80K; 2: one LTFU after TW4; 3: one LTFU at day 3

Disclosures: Eric Lavitz - Advisory Committees or Review Panels: AbbVie, Achillion Pharmaceu-ticals, Regulus, Theravance, Enanta, Idenix Pharmaceuticals, Janssen, Merck & Co, Novartis, Gilead; Grant/Research Support: AbbVie, Achillion Pharmaceuticals, Boehringer Ingelheim, Bristol-Myers Squibb, Gilead Sciences, GlaxoSmith-Kline, Idenix Pharmaceuticals, Intercept Pharmaceuticals, Janssen Pharmaceuticals, Novartis, Novartis, Natto Denko, Theravance, Salix, Enanta; Speaking and Teaching: Gil-ead, Janssen, AbbVie, Bristol Myers Squibb

Fred Poordad - Advisory Committees or Review Panels: Abbott/Abbivie, Achillion, BMS, Inhibitex, Boehringer Ingelheim, Pfizer, Genentech, Idenix, Gilead, Merck, Vertex, Salix, Janssen, Novartis; Grant/Research Support: Abbvie, Anadys, Achillion, BMS, Boehringer Ingelheim, Genentech, Idenix, Gilead, Merck, Pharmasset, Vertex, Salix, Tibotec/Janssen, Novartis

Jerry J. Li - Employment: Merck & Co, Inc

Hseuh-cheng Huang - Employment: Merck

Michael Robertson - Employment: Merck; Stock Shareholder: Merck

Janice Wahl - Employment: Merck & Co, Inc

Elia Barr - Employment: Merck; Stock Shareholder: Merck

Barbara A. Haber - Employment: Merck

The following people have nothing to disclose: Julio A. Gutierrez, Jennifer T. Wells, Carmen E. Landaverde, Joseph R. Keiling

LB-13 Sofosbuvir/Velpatasvir Fixed Dose Combination For The Treatment Of HCV In Patients With Decompensated Liver Disease: The Phase 3 ASTRAL-4 Study

Michael R. Charlton1, Jacqueline G. O'Leary2, Natalie H. Bzowaj2, Andrew J. Muri3, Kevin M. Korenblat4, Jonathan M. Fenkel4, K. Rajender Reddy4, Eric Lawitz5, Thomas D. Schiano6, Lewis W. Teperman7, Robert J. Fontana8, Eugene R. Schiff9, Michael W. Fried10, Brian Doehle11, Di An11, John McNally12, Anu Ousin13, Diana M. Brainard14, John G. Mc Hutchison15, Robert S. Brown15, Michael P. Curry16,17,18; 1Intermountain Medical Center, Salt Lake city, UT; 2Baylor University Medical Center, Dallas, TX; 3Ochsner Medical Center, New Orleans, LA; 4Duke University, Durham, NC, 5Washington University School of Medicine, Saint Louis, MO; 6Thomas Jefferson University, Philadelphia, PA; 7University of Pennsylvania School of Medicine, Philadelphia, PA; 8Texas Liver Institute, University of Texas Health Science Center, San Antonio, TX; 9Mount Sinai Hospital, New York, NY; 10New York University School of Medicine, New York, NY; 11University of Michigan, Ann Arbor, MI; 12University of Miami, Miami, FL; 13University of North Carolina at Chapel Hill / UNC School of Medicine, Chapel Hill, NC; 14Gilead Sciences Inc., Foster City, CA; 15Columbia University Medical Center/ New York Presbyterian, New York, NY; 16Beth Israel Deaconess Medical Center, Boston, MA

Introduction: HCV-infected patients with compensated liver disease have significant morbidity and mortality with limited HCV treatment options. Velpatasvir (VEL, formerly GS-5816), is a pangenotypic HCV NS5A inhibitor that has demonstrated high SVR rates in patients with genotypes 1-6 HCV infection when used in combination with sofosbuvir (SOF). This Phase 3 study evaluated the safety and efficacy of the fixed dose combination (FDC) of SOF/VEL in HCV infected patients with decompensated liver disease. Methods: Genotype (GT) 1, 2, 3, 4 or 6 HCV infected patients with CPT-B cirrhosis were randomized 1:1:1 to receive SOF/VEL (400 mg /100 mg) daily for 12 weeks, SOF/VEL + weight based RBV for 12 weeks, or SOF/VEL for 24 weeks. Patients with prior liver transplant or hepatocellular carcinoma were excluded. Results: Of the 267 patients randomized and treated, the majority were treatment experienced (55 %), white (90%), males (70%), with IL28B non-CC (77%). Patients had genotype 1 (78% overall, 60% 1a), 2 (4.5%), 3 (15%), 4 (3%) or 6 (<1%) HCV infection. The median CPT score was 8 (range 5-10) and median MELD score was (range 6-24). The SVR12 rates by GT are shown in table 1. SOF/VEL+RBV for 12 weeks resulted in high SVR rates with relapse occurring in 1 (1%) GT1 and 1 (8%) GT3 subjects respectively. A second GT3 patient in the SOF/VEL+RBV 12 Week group had on-treatment breakthrough with pharmacokinetic data consistent with nonadherence. There were no genotype 2, 4 and 6 virologic failures across all treatment arms. Among patients who achieved SVR, 47% and 56% had improvements in CPT and MELD scores by week 12 post EOT largely driven by increases in albumin and decreases in bilirubin. The most common adverse events were fatigue, headache, nausea and (anemia in the RBV containing arm with a median Hgb decrease of 1.4 g/dl). Overall 9 patients discontinued SOF/VEL due to adverse events. A total of 47 (18%) patients experienced serious adverse events (SAEs) with the most common being hepatic encephalopathy and sepsis; only 1 patient had SAEs assessed as related to SOF/VEL. There were 9 deaths: sepsis (3); liver failure (2); cardiopulmonary arrest (2); myocardial infarction (1) and respiratory failure (1); none were assessed as related to study drug. Conclusions: In HCV infected patients with decompensated liver disease, SOF/ VEL+RBV for 12 weeks resulted in an overall SVR rate of 94.3% with high individual SVR rates across all HCV genotypes and...
resulted in early improvements in liver function. This regimen was well tolerated with AEs consistent with clinical sequelae of decompensated liver disease and RBV.

Virologic Outcome By Genotype

<table>
<thead>
<tr>
<th>SOF/VEL 12 Week Group</th>
<th>Total (All GTs)</th>
<th>GT-1</th>
<th>GT-2</th>
<th>GT-3</th>
<th>GT-4</th>
<th>GT-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVR12</td>
<td>75/90 (83.3%)</td>
<td>60/68 (88.2%)</td>
<td>4/4 (100.0%)</td>
<td>7/14 (50.0%)</td>
<td>4/4 (100.0%)</td>
<td>NA</td>
</tr>
<tr>
<td>Virologic Failure</td>
<td>11/90 (12.2%)</td>
<td>5/68 (7.4%)</td>
<td>0/4</td>
<td>6/14 (42.9%)</td>
<td>0/4</td>
<td>—</td>
</tr>
<tr>
<td>Other</td>
<td>4/90 (4.4%)</td>
<td>3/68 (4.4%)</td>
<td>0/4</td>
<td>1/14 (7.1%)</td>
<td>0/4</td>
<td>—</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOF/VEL/RBV 12 Week Group</th>
<th>Total (All GTs)</th>
<th>GT-1</th>
<th>GT-2</th>
<th>GT-3</th>
<th>GT-4</th>
<th>GT-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVR12</td>
<td>82/87 (94.3%)</td>
<td>65/68 (95.9%)</td>
<td>4/4 (100.0%)</td>
<td>13/13 (84.6%)</td>
<td>2/2 (100.0%)</td>
<td>NA</td>
</tr>
<tr>
<td>Virologic Failure</td>
<td>3/87 (3.4%)</td>
<td>1/87 (1.5%)</td>
<td>0/4</td>
<td>2/13 (15.4%)</td>
<td>0/2</td>
<td>—</td>
</tr>
<tr>
<td>Other</td>
<td>2/87 (2.3%)</td>
<td>2/87 (2.6%)</td>
<td>0/4</td>
<td>0/13 (0.0%)</td>
<td>0/2</td>
<td>—</td>
</tr>
</tbody>
</table>

Virologic Outcome By Week

- **Week 4 (SVR4)**: 34 patients achieved SVR4. SVR at post-treatment week 4 (SVR4; HCV RNA measured using COBAS TaqMan® RT-PCR [lower limit of detection of 15 IU/mL and lower limit of quantitation of 25 IU/mL]) and safety data are reported.

Results

- **34 patients were enrolled**: 56% male, 97% white, 71% GT1a, 68% non-CC IL28B; 15% had an F3 fibrosis stage.

Conclusion

The combination of highly potent next generation DAAs ABT-493, an NS3/4A protease inhibitor identified by AbbVie and Enanta, and ABT-530, an NSSA inhibitor, demonstrated potent pangenotypic in vitro antiviral activity, with a high barrier to resistance and maintenance of activity against common resistance-associated variants. In Part 1 of the SURVEYOR-I study, ABT-493 and ABT-530 co-administered for 12 weeks showed high sustained virologic response (SVR) rates and was well tolerated in non-cirrhotic patients with HCV genotype 1 (GT1) infection. We present here the efficacy and safety data from Part 2 of the SURVEYOR-I study, which evaluates the combination of ABT-493 and ABT-530 administered for 8 weeks in non-cirrhotic patients with GT1 infection.

Methods: Treatment-naive or pegylated interferon treatment-experienced patients received once-daily ABT-493 300 mg + ABT-530 120 mg for 8 weeks. SVR at post-treatment week 4 (SVR4; HCV RNA measured using COBAS TaqMan® RT-PCR [lower limit of detection of 15 IU/mL and lower limit of quantitation of 25 IU/mL]) and safety data are reported.

Results: 34 patients were enrolled: 56% male, 97% white, 71% GT1a, 68% non-CC IL28B, 15% had an F3 fibrosis stage at baseline, and 15% were treatment experienced. The median (range) HCV RNA log10 IU/mL was 6.5 (2.9–7.5) at baseline, and 38% of patients had HCV RNA ≥ 6,000,000 IU/mL. All 34 (100%) patients achieved SVR4. SVR at post-treatment week 12 (SVR12) data will be available for presentation. One patient discontinued the study prematurely at treatment week 4 (with HCV RNA <15 IU/mL) due to the serious adverse event (AE) of adenocarcinoma, which was assessed as not related to treatment with study drugs. There were no additional serious or severe AEs reported. The most frequent AEs observed in >10% of patients were fatigue (21%) and diarrhea (12%).

Conclusions: The combination of highly potent next generation HCV DAAs, ABT-493 and ABT-530, was well tolerated and achieved 100% SVR4 in all patients regardless of baseline viral load or presence or absence of prior treatment history.

Disclosures: Fred Poordad - Advisory Committees or Review Panels: Abbott/Abbvie, Achillion, BMS, Inhibitex, Boehringer Ingelheim, Pfizer, Genentech, Idenix, Gilead, Merck, Vertex, Salix, Janssen, Novartis; Grant/Research Support: Abbv, Anadys, Achillion, BMS, Boehringer Ingelheim, Genentech, Idenix, Gilead, Merck, Pharmasset, Vertex, Salix, Tibotec/Janssen, Novartis

Franco Felizarta - Grant/Research Support: AbbVie, Gilead, Janssen, Merck, BMS, Boehringer-Ingelheim, Vertex, Roche; Speaking and Teaching: AbbVie, Gilead, Janssen, Merck

Armen Asatryan - Employment: AbbVie
METHODS: In Part A of 2 ongoing randomized, dose-ranging, parallel-group, multicenter, open-label Phase 2 trials, 93 GT1 (46 GT1a, 47 GT1b), 61 GT2, and 86 GT3-infected patients were enrolled. Across arms, SVR12 was achieved among 45/46 (98%) GT1a-infected patients, but regimens containing the 300 mg dose of MK-3682 and/or elbasvir resulted in lower efficacy (SVR12 in 29/45 (64%) GT2 patients; 60-71% across the 3 arms). Relapses were more common among patients who harbored an L31M/I NS5A variant at baseline. No treatment-emergent RAVs were observed. **GT2**: Across arms, SVR12 was achieved among 78/86 (91%) of GT3-infected patients; response was comparable across arms (86-95%). Eight GT3 patients relapsed. SVR12 was lower among GT3-infected patients who harbored an NS5A A30K, L31M, or Y93H RAV at baseline compared with patients without these RAVs at baseline (5/11 (45%) vs 72/74 (97%), respectively). Two of 8 GT3 relapsers acquired NS5A Y93H. All 240 patients completed the full 8 weeks of dosing. All regimens were generally well-tolerated, and no cardiac or renal safety signals were identified. The most frequent study drug-related AEs in >5% of all patients were headache, fatigue, nausea, diarrhea, flatulence and insomnia. There were no drug-related serious adverse events and no patients discontinued due to adverse events. **CONCLUSIONS**: An 8-week regimen of grazoprevir/MK-3682 (450 mg)/MK-8408 was highly effective and well-tolerated in GT1, 2, and 3-infected treatment-naïve, non-cirrhotic patients. The results of Part A support further evaluation of this 3-drug combination among a diverse population of HCV-infected patients, including those with additional HCV genotypes, cirrhosis, prior treatment, and HIV/HCV co-infection.

Disclosures:
Edward J. Gane - Advisory Committees or Review Panels: Novira, Abbvie, Janssen, Gilead Sciences, Janssen Cilag, Achillion, Merck, Tekmira; Speaking and Teaching: Abbvie, Gilead Sciences, Merck
Stephen Pianko - Advisory Committees or Review Panels: Roche, Novartis, Gilead, Roche, Novartis; Consulting: Gilead; Speaking and Teaching: JANSSEN, Stuart K. Roberts - Board Membership: Abbvie, Gilead
Alex J. Thompson - Advisory Committees or Review Panels: Gilead, Abbvie, BMS, Merck, Roche, Aradis Bank Pharmaceuticals, Arrowhead, Roche, Grant/Research Support: Gilead, Abbvie, BMS, Merck; Speaking and Teaching: Roche, Gilead, Abbvie, BMS
Stefan Zeuzem - Consulting: Abbvie, Bristol-Myers Squibb Co., Gilead, Merck & Co., Janssen
Ziv Ben Ari - Advisory Committees or Review Panels: MERCK, Abbvie, Gilead, BMS
Graham R. Foster - Advisory Committees or Review Panels: GlaxoSmithKline, Novartis, Boehringer Ingelheim, Takeda, Gilead, Janssen, Idenix, GlaxoSmithKline, Novartis, Roche, Tibotec, Chugai, Gilead, Merck, Janssen, Idenix, BMS, Alnylam; Board Membership: Boehringer Ingelheim; Grant/Research Support: Roche, Chugai, Springbank, Speaking and Teaching: Roche, Gilead, Tibotec, Merck, BMS, Boehringer Ingelheim, Gilead, Janssen
Kash Agarwal - Advisory Committees or Review Panels: Gilead, BMS, Novartis, Janssen, Abbvie; Consulting: MSD, Janssen, Achillion; Grant/Research Support: Roche, Gilead, BMS, Speaking and Teaching: Astellas, Gilead, BMS, GSK
Wei Gao - Employment: Merck
Hsu-cheng Huang - Employment: Merck
Jerry J. Li - Employment: Merck & Co., Inc
Shuyan Wan - Employment: Merck; Stock Shareholder: Merck

Bach-Yen T. Nguyen - Employment: Merck
Janice Wahl - Employment: Merck & Co.
Eliav Barr - Employment: Merck; Stock Shareholder: Merck

The following people have nothing to disclose: Eli, Zuckerman, Alex L. Laursen, Jan Gerstoft
High Rates of SVR in Patients with HCV Genotype 2 or 3 Infection Treated with Ombitasvir/Paritaprevir/r and Sofosbuvir with or without Ribavirin

Stephen Shafran1, David Shaw2, Eric Cohen3, Kash Agarwal4, Graham R. Foster5, Manal Abunimeh6, Daniel E. Cohen2, Edward J. Gane6

1University of Alberta, Edmonton, AB, Canada; 2Royal Adelaide Hospital, Adelaide, SA, Australia; 3AbbVie Inc., North Chicago, IL; 4Institute of Liver Studies, Kings College Hospital, London, United Kingdom; 5Queen Mary University of London, Barts Health, London, United Kingdom; 6Auckland City Hospital, Liver Unit, Auckland, New Zealand

Background: Few interferon-free treatments are approved for hepatitis C virus (HCV) genotype [GT] 2 and 3 infection. Among the approved treatment options, sustained virologic response rates 12 weeks post-treatment (SVR12) are lower in patients with cirrhosis or with prior treatment failure. We investigated the safety and efficacy of ombitasvir/paritaprevir (identified by AbbVie and Enanta)/ritonavir (OBV/PTV/r) plus sofosbuvir (SOF) in patients with GT2 or GT3 infection without cirrhosis. Methods: In this phase 2, open-label, multicenter study, patients with GT3 infection were randomized to receive OBV/PTV/r (25/150/100 mg once daily) plus SOF (400 mg once daily) with or without weight-based ribavirin (RBV) for 12 weeks. Patients were stratified by prior treatment status and IL28B genotype (CC vs non-CC). Patients with GT2 infection all received OBV/PTV/r plus SOF with RBV for 8 weeks. Efficacy was assessed by SVR12 defined as HCV RNA <25 IU/mL. Safety was assessed in all patients receiving at least 1 dose of study drugs. Results: Twenty patients with GT3 infection, including 8 with prior treatment failure, were randomized to receive OBV/PTV/r + SOF without RBV (N = 11) or with RBV (N = 9). One patient discontinued OBV/PTV/r + SOF + RBV treatment after 1 week due to non-serious events of viral flu-like symptoms and emesis. All other patients were HCV RNA suppressed <25 IU/mL by treatment week 2 and through the end of treatment. As of September 17 there have been no relapses; SVR12 was achieved in 7/7 (100%) GT3 patients treated for 12 weeks with OBV/PTV/r + SOF, and in 7/8 (88%) GT3 patients treated with OBV/PTV/r + SOF + RBV for 12 weeks. Ten patients with GT2 infection, including 2 with prior treatment experience, received 8 weeks of treatment with OBV/PTV/r + SOF + RBV, and 10/10 (100%) were HCV RNA suppressed at the end of treatment. As of September 17, all remain suppressed through post-treatment week 2 (10/10, 100%) and SVR at post-treatment week 4 was achieved in 9/9 (100%). Among the 30 patients in the study, 1 serious adverse event (pneumonia) was reported and not considered related to study drugs. Conclusions: The investigational combination of OBV/PTV/r with SOF for 12 weeks may be a promising IFN and RBV-free treatment option for patients with GT3 infection. This combination plus RBV for 8 weeks also appears highly effective in patients with GT2 infection. Complete SVR12 data will be presented.

Failure with All-oral DAA Regimens: Real-world experience from the Trio Network

Nezam H. Afdhal1, Bruce Bacon2, Douglas Dieterich3, Steven L. Flamm4, Kris V. Kowdley5, Yoori Lee6, Zobair M. Younossi7, Naoky CS C. Tsai8, 1Beth Israel Deaconess Medical Center, Boston, MA; 2Saint Louis University, St. Louis, MO; 3Mount Sinai School of Medicine, New York, NY; 4Northwestern University, Chicago, IL; 5Swedish Medical Center, Seattle, WA; 6Trio Health Analytics, La Jolla, CA; 7Inova/Fairfax Hospital, Fairfax, VA; 8The Queen’s Medical Center, Honolulu, HI

BACKGROUND: DAA therapies ledipasvir/sofosbuvir (LDV/SOF) and ombitasvir/paritaprevir/ritonavir/dasabuvir (VKP) have yielded SVR12 rates over 95% in clinical trials. Given the remarkable efficacy in clinical trials, understanding factors associated with treatment failure in clinical practice remains challenging due to the relatively few patients who do not achieve an SVR. AIM: The purpose of this study is to examine a large real-world population to assess the characteristics of patients with genotype 1 HCV who failed 12 week LDV/SOF, VKP or other all-oral DAA therapies. METHODS: Data were collected from providers and specialty pharmacies through Trio Health’s Innervation Platform, a cloud-based disease management program. All genotype 1 HCV patients who initiated treatment with 12 week LDV/SOF, VKP or sofosbuvir + ribavirin (SMV+SOF)-based regimens between Oct 2014 and Mar 2015 were included in the analysis (n = 1225). RESULTS: Overall SVR12 rate from this heterogeneous population was 97% (1190/1225). By regimen, rates were 97% (1128/1159) for LDV/SOF+/+-RBV, 95% (37/39) for VKP+/+-RBV and 93% (25/27) for SMV+SOF+/+-RBV. Of the 35 patients that did not achieve SVR, 6 discontinued treatment and 29 completed therapy and were virological failures. In the virological failures, treatment site (academic versus community practice), age, race, genotype subtype, viral load and presence of HIV coinfection (100% SVR, n = 90) or post-transplant (100% SVR, n = 40) were not associated with treatment failure. Positive association with virological failure in real life was male (80% in failures versus 58% in SVR, p<0.01), cirrhosis (60% in failures versus 27% in SVR, p<0.001), platelets less than 100,000/µL (41% in failures versus 10% in SVR, p<0.001) and prior treatment failure (60% in failures versus 40% in SVR, p<0.016). SUMMARY: Overall SVR in real world genotype 1 HCV patients is 97% across regimens and patient characteristics with cirrhosis, thrombocytopenia and prior treatment failure representing the most difficult to treat patients. Treatment discontinuation is not a major issue with any all oral DAA therapy

Disclosures:
Nezam H. Afdhal - Advisory Committees or Review Panels: Trio Helath Care; Board Membership: Journal Viral hepatitis; Consulting: Merck, EchoSens, BMS, Achillion, GlaxoSmithKline, Springbank, Gilead, AbbVie; Grant/Research Support: Gilead; Stock Shareholder: Springbank
Bruce Bacon - Advisory Committees or Review Panels: Gilead, Bristol-Myers Squibb, ISS, Abbvie, Janssen; Consulting: Merck; Grant/Research Support: Merck, Gilead, Bristol-Meyers Squibb, Abbvie, Speaking and Teaching: Merck, Gilead, Abbvie, Salix, Janssen
Douglas Dieterich - Advisory Committees or Review Panels: Gilead, BMS, Abbvie, Janssen, Merck, Achillion
Manal Abunimeh - Employment: AbbVie
Daniel E. Cohen - Employment: AbbVie; Stock Shareholder: AbbVie
Edward J. Gane - Advisory Committees or Review Panels: Novira, AbbVie, Janssen, Gilead Sciences, Janssen Cilag, Achillion, Merck, Tekmira; Speaking and Teaching: AbbVie, Gilead Sciences, Merck
The following people have nothing to disclose: David Shaw
LB-18
Daclatasvir and Asunaprevir in Non-Japanese Asian Patients With Chronic HCV Genotype 1b Infection who are Ineligible for or Intolerant to Interferon-alfa Therapies with or without Ribavirin: Phase 3 SVR12 Interim Results

Lai Wei1, Mingxiang Zhang2, Min Xu3, Wan-Long Chuang4, Wei Lu5, Wen Xie6, Zhanzheng Jia7, Guozhong Gong8, Yueqi Li9, Si-Hyun Bae10, Yong-Feng Yang11, Qing Xie12, Shumei Lin13, Xinyue Chen14, Junqi Niu15, Jidong Jia16, Tushar Garimella18, Anne Torbeyns19, Fiona McPhee20, Michelle Treitel18, Philip Yin20, Ling Mo21, Peiking University People’s Hospital and Peking University Hepatology Institute, Peking, China; 2The Sixth People’s Hospital of Shenyang, Shenyang, China; 3Guangzhou No.8 People’s Hospital, Guangzhou, China; 4Kaohsiung Medical University, Kaohsiung, Taiwan; 5Tianjin Second People’s Hospital, Tianjin, China; 6Beijing Ditan Hospital, Capital Medical University, Beijing, China; 7Tangdu Hospital, Tangdu, China; 8The Second Xiangya Hospital of Central South University, Xiangya, China; 9302 Military Hospital of China, Beijing, China; 10Seoul St Mary’s Hospital, Seoul, Korea (the Republic of); 11The Second Hospital of Nanjing, Affiliated to Medical School of Southeast University, Nanjing, China; 12Shanghai Ruijin Hospital, Jiaotong University School of Medicine, Shanghai, China; 13The First Affiliated Hospital of M.C. of Xi’an JiaoTong University, Jiaotong, China; 14Beijing Youan Hospital, Capital Medical University, Beijing, China; 15First Hospital of Jilin University, Jilin, China; 16Beijing Friendship Hospital, Capital Medical University, Beijing, China; 17Bristol-Myers Squibb, Shanghai, China; 18Bristol-Myers Squibb, Princeton, NJ; 19Bristol-Myers Squibb, Braine-l’Alleud, Belgium; 20Bristol-Myers Squibb, Wallingford, CT

Purpose: The all-oral combination of daclatasvir (DCV; pangenotypic NSSA inhibitor) and asunaprevir (ASV; NSS protease inhibitor) has been shown to be effective and well tolerated in Japanese patients with chronic HCV genotype (GT) 1b infection. This phase 3, single-arm, open-label study investigated the efficacy and safety of DCV + ASV in non-Japanese Asian patients with chronic HCV GT 1b infection who are ineligible for or intolerant to interferon-alfa therapies with or without ribavirin (IFN ± RBV).

Methods: Patients received DCV 60 mg (tablet) once daily + ASV 100 mg (soft capsule) twice daily for 24 weeks. Enrollment of patients with compensated cirrhosis was capped at 40%. The primary endpoint was sustained virologic response at post-treatment (PT) Week 24 (SVR24); interim (secondary) efficacy (SVR12) and safety analyses, conducted at PT Week 12, are reported here. Results: In total, 159 patients received DCV + ASV treatment; the majority were Chinese (89%), female (65%), aged (65 years) (82%), non-cirrhotic (67%), IL28B CC (60%), and had HCV RNA levels ≥800,000 IU/mL (91%). HCV RNA was undetectable in 86% of patients by treatment Week 4. SVR12 was achieved by 145 patients (91%, 95% CI 85.7–95.1) and was unaffected by cirrhosis status, gender, age, baseline HCV RNA level, IL28B genotype, and IFN eligibility/intolerance status; SVR24 was achieved by 47 of 52 (90%, 95% CI 79.0–96.8) and 98 of 107 (92%, 95% CI 84.6–96.1) patients with and without cirrhosis, respectively. SVR12 was higher in patients without baseline NSSA (L31M or Y93H) resistance-associated variants (RAVs) (n=137/139 [99%], regardless of the presence (n=43/44 [98%] or absence (n=94/95 [99%]) of cirrhosis. SVR12 was lower in patients with baseline NSSA RAVs (n=8/19 [42%]). All deaths (n=1/159 [0.6%]), serious adverse events (AEs) (n=5/159 [3.1%]) and grade 4 laboratory abnormalities (n=3/159 [1.9%]) that occurred on-treatment were considered to be unrelated to the study drugs; two patients experienced AEs leading to discontinuation (increase in bilirubin; anemia and increase in LDH). AEs in >5% of patients were: platelet count decrease, upper respiratory tract infection, ALT increase, absolute neutrophil count decrease, monocyte decrease, white blood cell decrease, thrombocytopenia and pruritus. Safety parameters were comparable in patients with and without cirrhosis.

Conclusions: The all-oral combination of DCV + ASV achieved a high SVR12 rate of 91%, rising to 99% in patients without baseline NSSA RAVs. This regimen was generally well tolerated in IFN ± RBV ineligible/intolerant non-Japanese Asian HCV GT 1b patients with or without cirrhosis.

Disclosures: Lai Wei - Advisory Committees or Review Panels: Gilead, AbbVie; Consulting: MSD, Grant/Research Support: BMS

Wan-Long Chuang - Advisory Committees or Review Panels: Gilead, AbbVie; Speaking and Teaching: BMS, Roche, MSD

Jidong Jia - Consulting: BMS, GSK, MSD, Novartis, Roche

Tushar Garimella - Employment: Bristol-Myers-Squibb; Stock Shareholder: Abbvie, Bristol Myers-Squibb

Anne Torbeyns - Employment: Bristol-Myers Squibb; Stock Shareholder: Bristol-Myers Squibb

Fiona McPhee - Employment: Bristol-Myers Squibb

Michelle Treitel - Employment: BMS

Philip Yin - Stock Shareholder: Bristol-Myers Squibb

Ling Mo - Employment: Bristol-Myers Squibb (China) Investment Co. Ltd

The following people have nothing to disclose: Mingxiang Zhang, Min Xu, Wei Lu, Wen Xie, Zhanzheng Jia, Guozhong Gong, Yueqi Li, Si-Hyun Bae, Yong-Feng Yang, Qing Xie, Shumei Lin, Xinyue Chen, Junqi Niu

LB-19
Prevalence of Direct Acting Antiviral (DAA) Resistance in the Department of Veterans Affairs (VA)

Mark Holodniy2, Mark A. Winters2, Lisa I. Backus3, Pamela S. Belperio3, Timothy R. Morgan4, David Ross5; 1VA Long Beach, Long Beach, CA; 2VAPAHCS, Palo Alto, CA; 3Office of Public Health, VA, Washington

Purpose: Determine prevalence of DAA resistance mutations (DRM) in a convenience sample of specimens from patients treated for HCV infection in VA. Methods: Plasma samples collected for clinical care were sent to the VA Public Health Reference Laboratory. HCV RNA was extracted from plasma, and then RT-PCR amplified for the NS3, NS5A, and NS5B genes using genotype-specific primers. Sanger sequencing was performed on amplicons, and sequences aligned to genotype-specific reference strains using Geneious software, and DRMs were identified based on publically available information. Only those genes included in the physician orders were evaluated, thus all 3 genes were not tested in all samples. Data on HCV genotype and VA, but not outside VA treatment history, were collected. Baseline samples in patients experiencing DAA regimen failure were not available for comparison of pre-existing mutations. Results: 224 unique patient samples were...
received from 26 VA medical centers from February-August 2015 and 220 (98%) yielded reportable results. Genotypes tested were: GT1a (150), GT1b (40), GT3a (20), GT2b (6), GT4a (3), GT2a (1). DRMs found overall are described in Table 1. Fourteen patients had DRMs in 2 or more genes. VA treatment history was known for 176 (80%) patient samples and of these, 25 were baseline samples from those who had only received peg-interferon/ribavirin. In those that were treatment naïve (and had no prior DAA exposure) 31/52 (60%) had one or more DRMs. In samples from treatment-experienced patients with prior DAA exposure 57/99 (58%) had one or more DRMs, with simeprevir/sofosbuvir (SIM/SOF, n=22) and ledipasvir/sofosbuvir (LED/SOF, n=20) being the most common regimens prescribed. Of those who failed SIM/SOF as their first VA regimen, NS5D DRMs included G80K (12), R155K (10) and D168V (4), and one NS5B L159F (1). Of those who failed LED/SOF as their first VA regimen, NS5A DRMs included: Q30R/H/E (7), Y93H/C/N (6), M28V (1) and H58D (1). One primary regimen failure of ombitasvir/paritaprevir/ritonavir/dasabuvir included NS5A DRMs M28V and Q30R. Conclusion: In VA specimens tested for HCV DRMs, numerous patients were found to have preexisting or post treatment HCV DRMs after regimen failure. Genotypic resistance testing may be helpful to guide initial and subsequent DAA regimens.

Table 1. Total Tested (# with DRM, %)

<table>
<thead>
<tr>
<th>Gene</th>
<th>Total Tested</th>
<th>NS5A</th>
<th>NS5B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>124 (57, 46%)</td>
<td>96 (41, 43%)</td>
<td>107 (46, 6%)</td>
</tr>
<tr>
<td>Q80K (54)</td>
<td>Q80K/H/E (20)</td>
<td>S556G/R (6)</td>
<td></td>
</tr>
<tr>
<td>R155K/Q (22)</td>
<td>Y93H (18)</td>
<td>M414T (1)</td>
<td></td>
</tr>
<tr>
<td>D168V/A/E (9)</td>
<td>L159V/F (14)</td>
<td>L159F (1)</td>
<td></td>
</tr>
<tr>
<td>Y93M (3)</td>
<td>M28VT (8)</td>
<td>N282T (1)</td>
<td></td>
</tr>
<tr>
<td>V51A (3)</td>
<td>Y93NS/V (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T545A/S (2)</td>
<td>K28R (2)</td>
<td>H58D (2)</td>
<td></td>
</tr>
</tbody>
</table>

Disclosures:
Mark A. Winters - Independent Contractor: Eiger Biopharmaceuticals
Timothy R. Morgan - Grant/Research Support: Merck, Abbvie, Genentech, Gilead, Bristol Myers Squibb
The following people have nothing to disclose: Mark Holodniy, Lisa I. Backus, Pamela S. Belperio, David Ross

LB-20
Retreatment of HCV Genotype 1 DAA-failures with Ombitasvir/Paritaprevir/r, Dasabuvir, and Sofosbuvir
Fred Poordad1, Michael Bennett2, Thomas E. Sepe3, Eric Cohen4, Robert Reindollar5, Gregory T. Everson6, Raymond W. Phillips7, Asma Siddique3, Greg Sullivan9, Terry D. Box10, Bo Fu11, Tami Pilot-Matias4, Manal Abunimeh11, Daniel E. Cohen12, Ziad Younes13, 1The Texas Liver Institute/University of Texas Health Science Center, San Antonio, TX; 2Medical Associates Research Group, San Diego, CA; 3University Gastroenterology, Liver Center, Providence, RI; 4AbbVie Inc., North Chicago, IL; 5Piedmont Healthcare/Carolina Center for Liver Disease, Statesville, NC; 6University of Colorado Denver School of Medicine, Aurora, CO; 7Gastroenterology Group of Naples PA, Naples, FL; 8Virginia Mason Hospital and Medical Center, Seattle, WA; 9Parkway Medical Center, Birmingham, AL; 10Clinical Research Centers of America, Murray, UT; 11GastroOne, Germantown, TN

Background: Retreatment options for HCV patients who fail treatment with direct-acting antiviral (DAA) regimens are not yet clearly defined. Resistance-associated variants in NS5A have been shown to persist up to 96 weeks post-treatment; thus, patients who fail regimens with NS5A inhibitors are likely to require a multi-targeted approach to retreat infection. We evaluated the safety and efficacy of ombitasvir/paritaprevir (identified by AbbVie and Enanta) and dasabuvir (DSV) plus sofosbuvir (SOF) in DAA-experienced patients with HCV genotype (GT) 1 infection. Methods: Patients with GT1 infection without cirrhosis were to receive OBV/PTV/r + DSV + SOF for 12 weeks; ribavirin (RBV) was added for patients with GT1a infection without cirrhosis. GT1a-infected patients with cirrhosis received 24 weeks of OBV/PTV/r + DSV + SOF + RBV. Enrolled patients must have had history of previous DAA treatment failure without discontinuation for reasons other than virologic failure. Efficacy was assessed by sustained virologic response (SVR), defined as an HCV RNA <25 IU/mL. Safety was assessed in all patients receiving at least 1 dose of study drugs. Results: Twenty-two DAA-experienced patients were enrolled including 20 with GT1a infection and 6 with compensated cirrhosis. Prior DAA included in the previous failed treatment regimens were OBV/PTV/r + DSV (n = 14), OBV/PTV/r + RBV (n = 2), telaprevir (n = 2), SOF (n = 2), simeprevir/samatasvir (n = 1), and simeprevir + SOF (n = 1). One GT1a patient without cirrhosis had treatment extended to 24 weeks in response to having an HCV RNA >25 IU/mL at treatment week 4. As of September 1, SVR4 was achieved in 15/15 (100%) patients treated for 12 weeks. Among patients receiving 24 weeks of treatment, 7/7 are virally suppressed below the lower limit of detection while on treatment. Two patients experienced serious adverse events (pneumonia and cellulitis), neither assessed as being related to study drugs. The patient with pneumonia discontinued study drug at week 10 and HCV RNA remains undetectable. Conclusions: The multi-targeted regimen of OBV/PTV/r + DSV + RBV in combination with SOF appears to be a promising retreatment strategy for patients who fail DAA-containing HCV regimens, including those containing an NS5A inhibitor. Baseline resistance and available SVR12 data will be presented.

Disclosures:
Fred Poordad - Advisory Committees or Review Panels: AbbVie/Abbvie, Achillion, BMS, Inhibitex, Boehringer Ingelheim, Pfizer, Genentech, Idenix, Gilead, Merck, Vertex, Salix, Janssen, Novartis; Grant/Research Support: Abbvie, Anadys, Achillion, BMS, Boehringer Ingelheim, Genentech, Idenix, Gilead, Merck, Phmarshassett, Vertex, Salix, Tibotec/Janssen, Novartis
Thomas E. Sepe - Advisory Committees or Review Panels: Gilead; Consulting: Gilead; Grant/Research Support: Gilead, AbbVie, BMS, Janssen, Idenix; Speaking and Teaching: Gilead, AbbVie
Eric Cohen - Employment: AbbVie
Gregory T. Everson - Advisory Committees or Review Panels: Roche/Gene­tech, Abbvie, Gilead, Merck, Vertex, Salix, Janssen, Novartis; Grant/Research Support: Abbvie, Anadys, Achillion, BMS, Boehringer Ingelheim, Genentech, Idenix, Gilead, Merck, Vertex, Idenix, Salix, Janssen, Novartis; Grant/Research Support: Gilead, Merck, BMS, AbbVie; Speaking and Teaching: Gilead, Idenix, Salix, Janssen, Novartis; Speaking and Teaching: Gilead, AbbVie
Tami Pilot-Matias - Employment: AbbVie
Manal Abunimeh - Employment: AbbVie
Bo Fu - Employment: AbbVie
LB-21
Preclinical characterization of CC-31244, a pan-genotypic, potent non-nucleoside NS5B polymerase inhibitor for the treatment of chronic hepatitis C

Irina Jacobson1, Michael Feese1, Hong Xiao1, Lothar Uher1, Biing Lin1, Emiliano J. Sanchez1, Robert J. Tomkiewicz1, Tony Whitaker2, Tamara McBrayer2, Luz Pascual2, Judy Pattassery2, Sam Lee1, 1Cocrystal Pharma, Inc.1, Bothel, WA; 2Cocrystal Pharma, Inc. 2, Tucker, GA

Purpose/Background: NS5B non-nucleoside inhibitors are a distinct class of direct acting agents (DAA) for the treatment of HCV. We designed and characterized a novel, pan-genotypic NNI inhibitor (CC-31244), which is targeted for use in combination DAA therapies. We present here our recent preclinical study results, including in vitro characterization of CC-31244, drug resistance profiles, and pharmacokinetic data.

Methods: NS5B polymerases (GT1-6) and drug resistant NS5B polymerases were purified for protein crystallization and IC50 determination. NS5B polymerase cocryystals were diffractions to 1.7 – 2.2 Å. Antiviral activity was determined using HCV replicon and chimeric replicon assays. Safety pharmacology and pharmacokinetic profiles of CC-31244 were determined.

Results: CC-31244 showed pan-genotypic activity against genotypes 1a - 6a. In HCV replicon assays, the EC50 values of CC-31244 against replicons from genotypes 1a, 1b, and 2a, and chimeric 1b replicons encoding NS5B from genotypes 3a, 4a, or 5a ranged from 2.26 nM. High resolution X-ray data have confirmed that CC-31244 binds to a highly conserved drug binding pocket, NNI-4, and extends to the highly conserved active site of the NS5B polymerase. CC-31244 showed excellent activity against the NNI-4 drug resistance variants including S365T and N316Y. HCV replicons with reduced susceptibility to CC-31244 have been selected in cell culture for GT1b. Reduced susceptibility to CC-31244 was associated with the NS5B amino acid substitution C445F. Site-directed mutagenesis of the C445F substitution conferred resistance to CC-31244, drug resistance profiles, and pharmacokinetic data.

Conclusion: A pan-genotypic NNI lead, CC-31244, demonstrated potent HCV antiviral activity, in vitro safety and a good pharmacokinetic profile. Given this favorable preclinical activity and safety profile, CC-31244 has been selected to advance to Phase 1 clinical studies in 2016.

Disclosures:
Tony Whitaker - Employment: Cocrystal Pharma, Inc
Tamara McBrayer - Employment: Cocrystal Pharma
Luz Pascual - Employment: Cocrystal Pharma Inc.; Stock Shareholder: Cocrystal Pharma Inc.

The following people have nothing to disclose: Irina Jacobson, Michael Feese, Hong Xiao, Lothar Uher, Biing Lin, Emiliano J. Sanchez, Robert J. Tomkiewicz, Judy Pattassery, Sam Lee

LB-22
Prevalence and Impact of Baseline NSA Resistance Associated Variants (RAVs) on the Efficacy of Elbasvir/Grazoprevir (EBR/GZR) Against GT1a Infection

Ira M. Jacobson1, Ernest Asante-Appiah2, Peggy Wong3, Todd A. Black4, Anita Y. Howe5, Janice Wahl6, Michael Robertson7, Bach-Yen T. Nguyen8, Melissa Shaughnessy9, Peggy Hwang2, Eliv Barr2, Daria Hazuda1, 1Mount Sinai Beth Israel, New York, NY; 2Merck & Co., Inc., Kenilworth, NJ

Background and Aims: A 12-week EBR/GZR regimen (no ribavirin [RBV]) is highly effective in GT1a patients. Viological failure (VF) occur mainly among patients in whom population sequencing at baseline (BL) identified substitutions at NS5A resistance-associated positions 28, 30, 31, 58, or 93 that reduced EBR potency 5-fold in vitro (5XRAVs). In GT1a patients who received 16 weeks of GZR/EBR+RBV, no VFs were observed despite the presence of 5XRAVs. We assessed the association between presence of BL NS5A RAVs and SVR12 using a more sensitive next generation sequencing (NGS) assay on BL samples from treatment-naive (TN) or experienced (TE) GT1a patients in Phase 3 trials.

Methods: NGS (Illumina MiSeq) deep sequencing was performed on BL samples from 355/362 and 54/55 subjects who received 12 weeks of EBR/GZR (no RBV) or 16 weeks of EBR/GZR+RBV, respectively, in Phase 3 trials and had BL NS5A results. Using NGS sensitivity thresholds (ST) from 20% to 1% (i.e., the fraction of virus sequences bearing RAVs, with maximum sensitivity at 1%), the prevalence of BL NS5A RAVs and their impact on efficacy were assessed. Specific BL RAVs that predicted failure were defined.

Results: 12 week/no RBV: 335/355 (94%) achieved SVR12; 20 had VF, of whom 16 were patients with BL 5XRAVs. Compared with the 1% ST, a 20% ST conferred much greater specificity/minimally less sensitivity in identifying VFs (Table). The 20% ST missed only one BL5XRPAV patient with VF, while at 1% ST, 20 more patients with BL 5XRAVs were identified but only one had VF. Only BL substitutions at positions 30, 31, 58 were associated with VF. At the 20% ST, patients with such RAVs constituted only 5.6% of the overall TN/TE GT1a population. In patients without these BL RAVs, including hard-to-cure patients (e.g., TE cirrhotics), a 12 week/no RBV regimen resulted in 99% SVR12. 16 week/RBV: All patients with BL NS5A RAVs achieved SVR12. Conclusion: Among GT1a patients, baseline NGS [20% ST] identifies a small group of patients harboring NS5A RAVs that reduce the efficacy of a 12 week/no RBV EBR/GZR regimen. The 12 week/no RBV regimen yielded a 99% SVR12 in patients lacking these BL RAVs. The impact of such RAVs on efficacy was no longer seen among patients given 16 weeks of EBR/GZR+RBV.

Disclosures:
Ira M. Jacobson - Consulting: AbbVie, Achillion, Alnylam, Bristol Myers Squibb, Enanta, Gilead, Janssen, Merck; Grant/Research Support: AbbVie, Bristol Myers Squibb, Gilead, Janssen, Merck; Speaking and Teaching: AbbVie, Bristol Myers Squibb, Gilead, Janssen

Ernest Asante-Appiah - Employment: Merck
LB-23
Complete cure after three weeks of all-oral triple-direct acting antiviral (DAAs) regimens in non-cirrhotic chronic hepatitis C genotype 1b Chinese subjects (SODAPI STUDY)

George K. Lau1,5, Yves Benhamou4, Guofeng Chen3, Jin Li6, Qing Shao5, Dong Ji5, Fan Li5, Bing Li5, Jialiang Liu5, Jinlin Hou5, Jian Sun7, Cheng Wang2,7, Jing Chen6, Vanessa Wu3, April Wong3, Lei Po, Chris Wang3, Stella Tsui Ying Tsang6, Wang Yudong7, Ruian Ke9, Alan S. Perelson9, Raymond F. Schinazi1,2; 1Pediatric Hepatology, Hôpital Pitié-Salpêtrière, Paris, France; 2Second Liver Cirrhosis Diagnosis and Treatment Center, 302 Hospital, Beijing, China; 3Institute of Infectious Disease, 302 Hospital, Beijing, China; 4State Key Laboratory of Organ Failure Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China; 5Hong Kong Molecular Pathology Diagnostic Centre, Hong Kong, China; 6Hong Kong Molecular Pathology Diagnostic Centre, Hong Kong, China; 7Division of Gastroenterology & Hepatology, Humanity & Health Medical Centre, Hong Kong, China; 8Service d’Hépatologie, Hôpital Pitié-Salpêtrière, Paris, France; 9Theoretical Biology and Biophysics, MSK-K710, Los Alamos National Laboratory, Los Alamos, NM

Background/Purpose: DAAs have a high cure rate and favorable tolerability in persons infected with hepatitis C virus (HCV). However, shorter courses could improve adherence, affordability and increase DAAs accessibility. We postulated that the addition of an NS3 protease inhibitor to dual NS5A-NS5B (nucleoside) inhibitors would enhance antiviral efficacy and reduce treatment duration to 3 weeks (wks) in individuals with a rapid virologic response (RVR) defined as plasma HCV RNA<500 IU/mL by day 2. Methods: In this pilot, response-guided therapy (RGT), open-label study, 26 non-cirrhotic Chinese subjects with chronic hepatitis C GT 1b [median age = 34 yr (21-66), male = 6, median BMI = 21.7 (15.9-32.1), baseline mean HCV RNA log10 IU/mL = 6.55 (4.09-7.34)] were randomized to receive at the approved doses either: sofosbuvir, ledipasvir and asunaprevir (group 1, n = 12), sofosbuvir, daclatasvir and simprevir (group 2, n = 6) or sofosbuvir, daclatasvir and asunaprevir (group 3, n = 8). Subjects who achieved RVR were maintained on their respective regimen for a total of 3 wks while others continued for 8-12 wks. Plasma HCV RNA was measured (Lower limit of quantification 25 IU/mL) at 0, 1, 2, 4, 8, 24 and 48 h after dosing, then weekly during treatment and monthly post-treatment until 12 wks. The primary endpoint was the proportion of subjects with plasma HCV RNA below the limit of detection 12 wks (SVR12) after treatment completion. Results: RVR was achieved in 18 (66.7%) subjects (6/12, 6/6, 6/8 for group 1, 2, 3 respectively, p = 0.06). Baseline viral load was lower in subjects with RVR as compared to those without RVR (log10 IU/mL 5.96 vs. 7.00, p<0.0001). The median time to achieve plasma HCV RNA < 25 IU/mL (limit of detection) was shorter in group 1 as compared to group 3 (p = 0.01). All 18 subjects who had RVR and 3 weeks DAAs achieved SVR12. There were no discontinuations or significant adverse events reported. Conclusions: This proof-of-concept SODAPI study explored RGT to shorten the duration of HCV treatment. The results strongly suggest that administration of potent triple regimens containing NS3, NS5A and NS5B HCV-inhibitors leads to RVR (plasma HCV RNA < 500 IU/mL) within 2 days in two-thirds of non-cirrhotic HCV GT 1b-infected subjects. 100% of subjects with RVR and had treatment for 3 wks, achieved SVR12, with excellent adherence and tolerability. Future studies exploring this RGT concept are recommended to reduce duration of therapy, cut drug costs, and to significantly improve accessibility and adherence. (ClinicalTrials.gov number NCT02470858)

Disclosures: George K. Lau - Consulting: Roche, Novartis, Roche, Novartis, Roche, Novartis; Jinhui Hou - Consulting: Roche, GSK, Novartis, BMS; Grant/Research Support: Roche, GSK, Novartis; Alan S. Perelson - Consulting: Bristol-Myers Squibb, Achillion Pharmaceuticals, Gilead; Stock Shareholder: Pfizer, Merck, Glaxo; Raymond F. Schinazi - Board Membership: Cocrystal Pharma, Inc.; Stock Shareholder: Cocrystal Pharma, Inc.

The following people have nothing to disclose: Yves Benhamou, Guofeng Chen, Jin Li, Qing Shao, Dong Ji, Fan Li, Bing Li, Jialiang Liu, Jian Sun, Cheng Wang, Jing Chen, Vanessa Wu, April Wong, Lei Po, Chris Wang, Stella Tsui Ying Tsang, Wang Yudong, Ruian Ke

LB-24
Cell Specific and Contradicting Functions of miR-615-5p and miR-155 in both Natural Killer cells and their Target Hepatocytes in Hepatocellular Carcinoma

Mai A. Rahmoon1, Rana A. Youness1, Asmaa Gomaa2, Iman Waked3, Gamal Esmaa4, Hend M. El Tayebi4, Ahmed I. Abdelaziz2; 1Molecular Pathology Research Group, German University in Cairo, Cairo, Egypt; 2National Liver Institute, Cairo, Egypt; 3Cairo University, Cairo, Egypt; 4Cairo University, Cairo, Egypt

Hepatocellular carcinoma (HCC) is a complex challenging disease, highly endemic in Egypt, and not amenable to traditional treatment. Consequently, an urge has developed for new strategies shifted towards boosting the body’s immune system to harness HCC progression. Previous literature unraveled the critical role of Insulin-like Growth Factor (IGF) axis as a primary gatekeeper in HCC initiation as well as a paradigmatic immunity modulator. Natural Killer (NK) cells are the native sentinels of the innate immune system against tumors in humans, reported to be mediated by IGF system and a class of non-coding RNAs known as microRNAs. In-silico analysis showed that IGF-1R is potentially regulated by miR-615-5p and miR-155. Therefore, this study aimed at investigating the impact of both miRNAs on the IGF-axis and hence on NK signaling and function in HCC patients and Huh7 cells for the first time as a proposed triad for an efficient immunotherapy. Huh7 cells were cultured and NK cells were isolated from 50 HCC patients and Huh7 cells for the first time as a proposed triad to be mediated by IGF system and a class of non-coding RNAs known as microRNAs. In-silico analysis showed that IGF-1R is potentially regulated by miR-615-5p and miR-155. Therefore, this study aimed at investigating the impact of both miRNAs on the IGF-axis and hence on NK signaling and function in HCC patients and Huh7 cells for the first time as a proposed triad for an efficient immunotherapy. Huh7 cells were cultured and NK cells were isolated from 50 HCC patients. Both cell types were transfected by miRNAs of interest using lipofect. Total RNA was extracted and quantified using qRT-PCR. The cytotoxicity of NK cells was measured by LDH Cytotoxicity Assay using Huh7 as target cells. miR-615-5p and miR-155 are significantly upregulated in NK cells of HCC patients compared to healthy controls. Ectopic expression of miR-615-5p in the effector NK cells and the target Huh7 cells, repressed IGF-IR and its mediator STAT3, opposing to miR-155 which induced IGF-IR and STAT3. The impact of both miRNAs inducing opposing effects on the IGF-axis was then studied in NK cells. miR-615-5p reduced NGK2D, TNF-α and perforin expression level, while miR-155 over expressed the plectropin TNF-α only. In
Hepatic CD56bright cells are enriched in liver perfusate (41.3 ± 0.27%). In this study we describe a unique hepatic population of EOMES hi TBET lo CD56 bright NK cells which are phenotypically distinct from peripheral blood and show enhanced cytotoxicity. We believe these cells generate from local lymphoid precursors and continue to differentiate after transplantation.

Disclosures:
The following people have nothing to disclose: Cathal Harmon, Ronan Fahy, Sarah Whelan, Diarmuid D. Houlihan, Justin Geoghegan, Cliona O'Farrell

LB-26
The Italian Compassionate use of Sofosbuvir (ITACOPS) in patients with HCV-related cirrhosis waitlisted for liver transplantation: virological and clinical outcomes from a national real-life experience.

Silvia Martini1, Maria F. Donato2, Chiara Mazzarelli3, Maria Rendina4, Daniela Fili5, Alice Gianstefani6, Ubaldo Visco Comandini7, Stefano Fagioli8, Pierlugi Russo9, Sandra Petraglia9, Simona Montilla9, Luca Pani9, Paola Carrara10, Paolo Caraceni1,1 Città della Salute e della Scienza, University of Turin, Turin, Italy; 2First Division of Gastroenterology, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Milan, Italy; 3Hepatology and Gastroenterology Unit, Niguarda Ca’ Granda Hospital, Milan, Italy; 4Gastroenterology, University of Bari, Bari, Italy; 5Mediterranean Institute for Transplantation and Advanced Specialized Therapies, Palermo, Italy; 6Department of Surgical and Medical Sciences, University of Bologna, Bologna, Italy; 7Infectious Diseases - Hepatology, National Institute for Infectious Diseases Spallanzani, Rome, Italy; 8Gastroenterology and Transplant Hepatology, Ospedale Papa Giovanni XXIII di Bergamo, Bergamo, Italy; 9Italian Drug Agency (AIFA), Rome, Italy; 10Oncology, new Technologies and Transplants, Medical School of Pisa, Pisa, Italy

Background/aims. Sofosbuvir/Ribavirin (SOF/R) can prevent HCV recurrence after liver transplantation (LT) in patients with compensated cirrhosis and hepatocellular carcinoma (HCC). This study aimed to assess the real-life efficacy and safety of SOF/R in waitlisted patients within the frame of a national compassionate program endorsed by the Italian Drug Agency (AIFA). **Methods.** Patients with decompensated cirrhosis (Child B and C) and/or HCC within Milan criteria waitlisted for LT were enrolled to receive daily SOF/R until LT or for a maximum of 48 weeks. **Results.** 216 patients (115 without and 101 with HCC) with at least one follow-up visit were included in the present preliminary analysis. Median age was 55 years (25-70), while 74% were male. Genotypes were 1a (16%) 1b (47%), 2 (7%), 3 (22%) and 4 (8%). Basal median MELD and Child-Pugh (C-P) scores were 13 (6-24) and 8 (5-12), respectively. Of the 88 transplanted patients, 56 patients stopped treatment at LT: up to now, 4% of those with HCV-RNA negative for >4 weeks relapsed after LT as compared to 36% of those negative for <4 weeks. In 32 patients, physicians decided to continue treatment after LT (bridge therapy) because still viremic or HCV-RNA negative for <4 weeks at transplant: up to now, 6% of patients relapsed after stopping therapy. In the pre-transplant treatment phase, median time to HCV-RNA clearance was 4 weeks (2-24), while only 2 patients presented a virological failure (1 non-responder and 1 breakthrough). MELD and C-P scores showed a trend to a progressive improvement during treatment in the whole population. However, at 24 weeks of treatment, while mean MELD and C-P scores did not differ from baseline in patients with MELD <15 (n=40) or C-P <8 (n=37), a significant decrease was observed in those with MELD=15 (n=54) or C-P>8 (n=56). In this latter group, MELD improved by at least 3 points in 35% of patients, reaching a value below 15 in 40%, and C-P by 3 points in 28%. 9 patients died during treatment for complications of cirrhosis (7 pts) or related to LT (2 pts). The most frequent adverse event related to treatment was the R-induced anemia, while no severe adverse events could be directly attributed to SOF.
Conclusions. These real-life data indicate that waitlisted patients: 1. SOF/R appears to be safe and effective in preventing viral recurrence after LT also in decompensated cirrhosis, and 2. viral clearance is associated to a significant improvement of liver function within months in a proportion of patients with advanced cirrhosis. If strengthened and confirmed longer, this latter finding may lead to inactivation and even delisting of some of these patients without HCC.

Disclosures:
Paola Carrai - Consulting: Gilead
Paolo Caraceni - Advisory Committees or Review Panels: GSK; Consulting: BMS; Grant/Research Support: Grifols; Speaking and Teaching: Bayer, Merck

The following people have nothing to disclose: Silvia Martini, Maria F. Donato, Chiara Mazzarelli, Maria Bendina, Daniela Filli, Alice Gianstefani, Ubaldo Visco Comandini, Stefano Fagiuoli, Pierluigi Russo, Sandra Petraglia, Simona Montilla, Luca Pani

LB-27
The Italian Compassionate use of Sofosbuvir (ITACOPS) in patients with recurrent HCV hepatitis after liver transplantation: virological and clinical outcomes and safety from a national real-life experience
Paola Carrai1, Maria Cristina Morelli2, Maria Rosa Tamè3, Ilaria Lenci4, Patrizia Burr4, Paolo Angeli5, Roberto Gangà6, Giada Pietros7, Rosa Maria Iemmolo8, Sherrie Bhooi9,10, Francesco Paolo Russo11, Guido Piai12, Carmine Coppola13,14, Simona Montilla15, Pierluigi Russo14,16, Sandra Petraglia14,16, Silvia Martinii15,16, Silvia Martinini15,16, Pierluigi Toniutto16,17, Hepatobiliary and Liver Transplant Surgery Unit, Pisa, Italy; 2Liver Transplant Medical and Surgical Unit, University of Bologna, Bologna, Italy; 3Gastroenterology, University of Padova, Padova, Italy; 4Internal Medicine, University of Padova, Padova, Italy; 5Internal Medicine, University of Cagliari, Cagliari, Italy; 6Department of Medicine, Hepatology Unit, IRCCS-IISMETT, Palermo, Palermo, Italy; 7Transplant Surgery and Gastroenterology Unit, University of Modena, Modena, Italy; 8National Cancer Institute, Milano, Milano, Italy; 9Transplantation, University of Padova, Padova, Italy; 10Hepatic Physiopathology, Caserta, Caserta, Italy; 11Liver Unit, Hospital of Gragnano, Gragnano, Italy; 12Italian Drug Agency (AIFA), Roma, Roma, Italy; 13Hepatology and Gastroenterology Unit, University of Torino, Torino, Italy; 14Medical Liver Transplant Unit, Internal Medicine, University of Udine, Udine, Italy

Background/aims. New IFN-free regimens have the highest expectations of care in recurrent hepatitis C (RHC) after liver transplantation (LT). This study aimed to evaluate the virological and clinical efficacy of the combination of Sofosbuvir and Ribavirin (SOF/R) for 24 weeks in treating RHC within the frame of a compassionate program endorsed by the Italian Drug Agency (AIFA). Methods. Patients with RHC and METAVIR F3-F4 were prospectively enrolled and received daily SOF (400 mg) plus R (400-1200 mg) for 24 weeks. Clinical and virological data were collected at baseline and at regular intervals. Serum HCV RNA was 1.8x10^3 IU/ml (38-1x10^8). Two hundred five patients: 1b (58%), 2 (5%), 3 (14%) and 4 (4%). Median (range) basal HCV RNA was 1.8x10^3 IU/ml (38-1x10^8). Two hundred five patients: 1a (19%), 1b (58%), 2 (5%), 3 (14%) and 4 (4%). Median (range) basal HCV RNA was 1.8x10^3 IU/ml (38-1x10^8). Two hundred five patients: 1a (19%), 1b (58%), 2 (5%), 3 (14%) and 4 (4%). Median (range) basal HCV RNA was 1.8x10^3 IU/ml (38-1x10^8). Two hundred five patients were treated with either SIM/SOF or LDV/SOF for 12 weeks or extending therapy to 24 weeks in those intolerant to RBV. Previously, the use of RBV as part of the antiviral regimen has resulted in the ability to treat earlier in the post-LT course and clinical efficacy of the combination of Sofosbuvir and Ribavirin (SOF/R) or ledipasvir/sofosbuvir (LDV/SOF) without ribavirin (RBV) x 12 wks. EOT was achieved in 329/330 (99.7%) and SVR 4 in 284/330 (86.3%) patients. SVR 12, available in a subgroup of 207 patients, was achieved in 201 (97.1%) of them. No significant differences in SVR4 were observed between HCV genotype 1 Vs other genotypes (83.3% Vs 88.1%, p=0.95) or using median daily R ≤500 mg (91% Vs 85%, p=0.12) A significant better SVR4 rate was observed in patients with METAVIR F3 compared to those with F4 (93.5% Vs 85.3%, p=0.033) and in cirrhotics with CP score of 5 Vs CP >5 (92.7% Vs 76.4%, p=0.002). Compared to baseline, a significant difference in mean CP score values 4 weeks after the end of treatment was observed between patients with and without SVR4 (from 5.98 to 5.65 Vs 6.74 to 8.91, p=0.018). At multivariate analysis, in the whole population the only independent predictor of SVR4 failure was METAVIR F4 (O.R. 6.58, C.I. 1.48-29.3, p=0.002) while in cirrhotics was CP score >5 (O.R. 11.8, C.I. 2.57-53.8, p<0.001). In 29% of patients the R-induced anemia was treated by EPO. No significant drug interactions and no deaths related to antivirals were reported. Conclusions. This large real-life study indicates that SOF/R combination therapy for 24 weeks is a very effective and tolerated treatment for RHC, particularly in patients with less severe RHC or in those with CP5 cirrhosis.

Disclosures:
Paola Carrai - Consulting: Gilead
Paolo Caraceni - Advisory Committees or Review Panels: GSK; Consulting: BMS; Grant/Research Support: Grifols; Speaking and Teaching: Bayer, Merck

The following people have nothing to disclose: Maria Cristina Morelli, Maria Rosa Tamè, Ilaria Lenci, Patrizia Burr, Roberto Gangà, Giada Pietrosi, Rosa Maria Iemmolo, Francesco Paolo Russo, Guido Piai, Carmine Coppola, Simona Montilla, Pierluigi Russo, Sandra Petraglia, Luca Pani, Silvia Martinini, Pierluigi Toniutto

LB-28
Efficacy and Tolerability of a 12 week Course of Sofosbuvir-based HCV Antiviral Therapy without Ribavirin for Treatment of Recurrent HCV Genotype 1 Infection after Liver Transplantation
Molly S. Hassett, Heather O’Dell, David S. Raiford, Christie B. Truscott, Chan Y. Chung, Natasha J. Schneider, Andrew Scanga, Roman Perri, Michael K. Porayko; Liver Transplant, Vanderbilt University, Nashville, TN

Aims: To evaluate sustained viral responses (SVR) and potential adverse events in patients with recurrent hepatitis C (HCV) infection after liver transplantation (LT) who underwent 12 weeks (wks) of therapy with either simprevir/sofosbuvir (SIM/SOF) or ledipasvir/sofosbuvir (LDV/SOF) without ribavirin (RBV) x 12 wks. Background: Recurrent HCV infection after LT has been associated with accelerated rates of liver allograft fibrosis & reduced response rates to conventional antiviral therapy. Treatment with new direct acting antiviral medications has resulted in the ability to treat earlier in the post-LT course with greater efficacy & tolerability than ever before. However, given the unique characteristics of this immunosuppressed population, the current clinical guidelines (AASLD-IDSA) continue to recommend treating patients with recurrent HCV genotype 1 [G1] infection after LT with regimens that contain ribavirin when treating for 12 wks or extending therapy to 24 wks in those intolerant to RBV. Previously, the use of RBV as part of the antiviral regimen has been associated with anemia and the potential to worsen renal function in the setting of nephrotoxic immunosuppression. Methods: We examined the results of 66 LT recipients having documented recurrent HCV G1 infection who were treated with either SIM/SOF or LDV/SOF for 12 wks without RBV. Although fatigue and headache were reported,
none of the patients had to interrupt or discontinue therapy due to adverse events. **Conclusions:** We observed excellent responses when treating LT patients with recurrent HCV GT1 using combinations of SIM/SOF or LDV/SOF without ribavirin for 12 wks. Given the improved tolerability of these treatment regimens, most patients were able to initiate antiviral therapy earlier in their post-LT course, prior to the development of more advanced fibrosis. These response rates are comparable or better than those previously reported in this unique patient population. Further corroboration of these data may result in the elimination of the need for RBV in 12 wk treatment regimens or for extended duration (24 wk) antiviral therapy in post-LT patients.

<table>
<thead>
<tr>
<th>SIM/SOF</th>
<th>LDV/SOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total patients (N)</td>
<td>48</td>
</tr>
<tr>
<td>Rx experienced</td>
<td>35</td>
</tr>
<tr>
<td>Stage 3 - 4 fibrosis</td>
<td>10</td>
</tr>
<tr>
<td>GT1a</td>
<td>38</td>
</tr>
<tr>
<td>Viral load >6,000,000 IU/mL</td>
<td>11</td>
</tr>
<tr>
<td>Viral relapse</td>
<td>3</td>
</tr>
<tr>
<td>SVR (%)</td>
<td>45 (94%)</td>
</tr>
</tbody>
</table>

Disclosures:
The following people have nothing to disclose: Molly S. Hassett, Heather O’Dell, David S. Rainford, Christie B. Truscott, Chan Y. Chung, Natasha J. Schneider, Andrew Scanga, Roman Perri, Michael K. Porayko

LB-29
Decline in Hepatitis C Virus-related Liver Transplantation Waitlist Registrations among Patients without Hepato-cellular Carcinoma: Early Effect of Direct-Acting Antivirals?

Ryan B. Perumpail, Robert J. Wong, Channa R. Jayasekera,
Stevan A. Gonzalez, Jeffrey S. Glenn, Zobair M. Younossi,
Aijaz Ahmed; 1Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA; 2Division of Gastroenterology and Hepatology, Alameda Health System, Highland Hospital, Oakland, CA; 3Department of Transplantation, California Pacific Medical Center, San Francisco, CA; 4Division of Hepatology, Simmons Transplant Institute, Baylor All Saints Medical Center, Fort Worth, TX; 5Department of Medicine, Center for Liver Disease, Inova Fairfax Hospital, Falls Church, VA; 6Betsy and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, VA

Background: Hepatitis C virus (HCV) infection is the leading indication for liver transplantation (LT) in the U.S. In late 2013, the U.S. Food and Drug Administration (FDA) first approved second-generation direct-acting antiviral (DAA) agents for the treatment of HCV infection – simeprevir on November 22, 2013, and sofosbuvir on December 6, 2013. DAA therapy has been prioritized in patients with HCV-related cirrhosis in an effort to retard clinical progression and induce regression of hepatic histologic damage. Our study aims to analyze the impact of DAA therapy on new waitlist registrations (NWR) for LT in the setting of HCV-related cirrhosis. Methods: Utilizing the most up-to-date United Network for Organ Sharing data through March 31, 2015 available as of Sept. 2015, we evaluated HCV-specific NWR trends for 15 months prior to and following the FDA approval of DAA agents. We excluded November and December 2013 from our analysis. We compared the mean of NWR for LT between Aug. 2012 and Oct. 2013 to the mean of NWR for LT between Jan. 2014 and Mar. 2015 among HCV patients without hepatocellular carcinoma (HCC) using the unpaired t-test. Results: From Aug. 2012 to Mar. 2015, the range for NWR for all indications of LT varied from 740 to 976 each month. The proportion of all NWR for LT represented by HCV patients declined 23.0% (34.8% in Aug. 2012 and 26.8% in Mar. 2015). Moreover, the proportion of all NWR for LT represented by HCV patients without HCC declined 33.0% (23.0% in Aug. 2012 and 15.4% in Mar. 2015). There was a statistically significant decline in NWR for LT in non-HCC HCV patients from Jan. 2014 to Mar. 2015 (mean, 153 per month) compared to Aug. 2012 to Oct. 2013 (mean, 188 per month) (mean difference 35.0, 95% confidence interval [19.7, 50.2], p<0.0001). Among HCV-related NWR for LT, the proportion of patients without HCC declined 12.5% (66.3% in Aug. 2012 and 58.0% in Mar. 2015) (Figure). Numerically, while the absolute number of NWR for HCC HCV LT remained stable, NWR for non-HCC HCV LT declined significantly, resulting in the rising percentage for HCC HCV noted in the Figure. Conclusions: We report a statistically significant downtrend in NWR for LT among HCV patients without HCC following the introduction of second-generation DAA agents. Our study is limited by its retrospective design.

LB-30
A Phase 3, Randomized, Double-blind, Placebo-controlled Study of Lusutrombopag for Thrombocytopenia in Patients with Chronic Liver Disease Undergoing Elective Invasive Procedures in Japan (L-PLUS 1)

Namiki Izumi, Yukio Osaki, Kazuhide Yamamoto, Mineo Kurokawa, Katsuaki Tanaka, Takeshi Kano, Takahiro Fukuhara, Toshimitsu Ochiai, Michio Imawari, Musashino Red Cross Hospital, Tokyo, Japan; Osaka Red Cross Hospital, Osaka, Japan; Okayama University, Okayama, Japan; The University of Tokyo, Tokyo, Japan; Yokohama City University Medical Center, Yokohama, Japan; Shin-Nihon Co., Ltd., Osaka, Japan; Shin-Yurigaoka General Hospital, Kawasaki, Japan

Purpose: Thrombocytopenia is common in patients (pts) with chronic liver disease (CLD). These pts often receive platelet transfusions as standard therapy in preparation for invasive procedures. Lusutrombopag (LUSU), an oral thrombopoietin receptor agonist, upregulates platelet production. This multicenter study evaluated the efficacy and safety of LUSU versus (vs) placebo (PBO) in thrombocytopenic pts with CLD undergoing elective invasive procedures. **Methods:** Pts with CLD...
who had a platelet count [PTC] <50,000/μL and a planned invasive procedure were randomized (1:1) to receive a LUSU 3-mg tablet or matching PBO once daily for up to 7 days. Platelet transfusion was required for all pts with a preoperative PTC <50,000/μL. The primary endpoint was the proportion of pts who required no preoperative platelet transfusion. Key secondary endpoints were the proportion of responders (pts who attained a PTC ≥50,000/μL with a ≥20,000/μL increase from baseline) and duration of PTC increase. Results: Of 97 pts randomized, 96 (48 in each treatment arm) received LUSU or PBO. Baseline characteristics were balanced in the 2 arms. Mean baseline PTC was 40,400/μL. Common invasive procedures included percutaneous liver ablation (42.7%), transcatheter arterial chemoembolization (25.0%), and endoscopic variceal ligation (14.6%). The proportion of pts who required no preoperative platelet transfusion was significantly greater with LUSU (79.2% [38/48 pts]) than with PBO (12.5% [6/48 pts]) (P=0.0001). The proportion of responders was significantly greater with LUSU (77.1% [37/48 pts]) than with PBO (6.3% [3/48 pts]) (P=0.0001). The number of days (d) (median) on which the PTC was ≥50,000/μL was significantly greater with LUSU (22.1 d without platelet transfusion) than with PBO (3.3 d with platelet transfusion) (P=0.0001). Adverse events [AEs] were reported for 93.8% (45/48) of LUSU-treated pts and 100% (48/48) of PBO-treated pts. Frequently reported AEs (>20%) in both arms were postoperative fever [LUSU, 39.6%; PBO, 56.3%], procedural hypotension [41.7%; 41.7%], procedural hypertension [41.7%; 37.5%], and increased AST (22.9%; 31.3%). Increased ALT also was a frequent AE in LUSU-treated pts (22.1 d without platelet transfusion) compared to placebo. In contrast, there were substantial and durable reductions in the rates of histologic improvement between groups [CyB 28% (25/88) vs placebo 22% (18/81); relative improvement ratio=1.3, 95% CI: 0.8-2.1, p=0.34]. ITT analyses of 4 individual histologic features showed no significant (Bonferroni p<0.0125 required) differences between CyB and placebo comparing initial to end-of-treatment improvement in steatosis (30% vs 41%, p=0.15), ballooning (19% vs 26%, p=0.29), lobular inflammation (36% vs 21%, p=0.03), or fibrosis (28% vs 28%, p=0.98). Children receiving CyB had a greater mean (SD) change in ALT [-53 [88] vs -8 [77] U/L, p=0.02] and AST [-31 [52] vs -4 [36] U/L, p=0.008] compared to placebo. Reductions in aminotransferases with CyB treatment occurred within the first 4 weeks and were sustained through 52 weeks of treatment. Serum lipids, cholesterol, and insulin sensitivity were unchanged. There was no difference in adverse events for children taking CyB compared to placebo. Conclusion: One year of treatment with cysteamine bitartrate DR was safe, but did not improve liver histology in children with NAFLD compared to placebo. In contrast, there were substantial and
rapid improvements in liver enzymes with CyB treatment. Lessons learned in CyNCh should guide future clinical trials for pediatric NAFLD.

Disclosures:
Joel E. Lavine - Advisory Committees or Review Panels: Janssen; Consulting: Prestige Brands, Pfizer
Brent A. Neuschwander-Tetri - Advisory Committees or Review Panels: Nimbus Therapeutics; Bristol Myers Squibb, Janssen, Mitsubishi Tanabe, Conatus, Schollar Rock, Zalgen, Pfizer, Novartis, Galmed
Sarah E. Barlow - Stock Shareholder: Dyax Corporation
Jean P. Molleston - Grant/Research Support: scherring, roche, vertex, raptor, abbvie; Speaking and Teaching: vindico
Philip Rosenthal - Advisory Committees or Review Panels: Abbvie, Retrophin; Consulting: Gilead; Grant/Research Support: Gilead, Abbvie, Vertex, BMS, Roche/Genetech
Karen F. Murray - Grant/Research Support: Gilead, Vertex; Stock Shareholder: Merck
Elizabeth M. Brunt - Consulting: Synageva; Independent Contractor: Rottapharm
The following people have nothing to disclose: Jeffrey B. Schwimmer, Laura Wilson, Stavra A. Xanthakos, Miriam B. Vos, Peter F. Whittington, Ajay K. Jain, David E. Kleiner, Mark L. Van Natta, Jeanne M. Clark, James Tonascia, Edward Doo

LB-32
A new botanical drug, HL tablet, reduces significantly hepatic fat by MR spectroscopy in patients with nonalcoholic fatty liver disease: a placebo-controlled, randomized, Phase II clinical trial
Yeon Kim1, Sung Woon Hong1, Mi Hyung Lim1, Jong Hwan Lim6, Sung Hum Yeon7, Yang Hyun Baek2, Yong Kyun Cho3, Joo Hyun Sohn4,5; 1Clinical Research Team, Huons Co., Ltd, Ansan, Korea (the Republic of); 2Internal Medicine, Dong-A University of Medicine, Busan, Korea (the Republic of); 3Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea (the Republic of); 4Hanyang University College of Medicine, Seoul, Korea (the Republic of); 5Internal Medicine, Hanyang University Guri Hospital, Guri, Korea (the Republic of); 6Preclinical Research & Development Team, Huons Co., Ltd, Ansan, Korea (the Republic of); 7Botanical Drug Research Team, Huons Co., Ltd, Ansan, Korea (the Republic of)

[Background] The demand of new drugs for nonalcoholic fatty liver disease (NAFLD) is increasing worldwide. Magnolia officinalis is a traditional herbal medicine that has been used to treat various liver diseases. HL tablet is a new botanical drug extracted from magnolia officinalis. This study is aimed to evaluate the effect and safety of HL tablet in the treatment of patients with NAFLD. [Methods] A placebo-controlled, parallel, multi-center, randomized, double-masked, Phase II clinical trial: 74 patients with NAFLD diagnosed by ultrasonic examination were given HL tablets of low dose group (100mg/day), high dose group (300mg/day), or placebo by equal chance (1:1:1) twice daily for 12 weeks. Safety analysis set, full analysis set and per protocol set was analyzed in 73, 68, and 60 subjects, respectively. The primary endpoint was pre and post-treatment variation of hepatic fat content by magnetic resonance spectroscopy (MRS). Secondary endpoints included pre and post-treatment variation of hepatic fat content by magnetic resonance spectroscopy (MRS). Secondary endpoints included pre and post-treatment variation of serum AST, ALT, cholesterol, triglyceride, free fatty acid (FFA), homeostasis model assessment-estimated insulin resistance (HOMA-IR), and body mass index (BMI). [Results] Compared with placebo group, HL significantly reduced the mean hepatic fat content by MRS in a dose-dependent manner (mean change, high dose vs. placebo, -1.71 vs. +0.63, p=0.0328; variation rate compared to baseline, high dose: -12.14%±23.46, low dose: -3.21%±31.98, and placebo: 7.56%±43.98). Serum AST and ALT had shown its tendency to decrease in the groups of HL tablet. Other factors (cholesterol, triglyceride, FFA, HOMA-IR, and BMI) were not affected by the treatment of HL tablet or placebo. There was no drug related safety issues during the study. [Conclusion] Despite the short-term treatment only for 12 weeks, HL tablet has shown effectiveness on the reduction of hepatic fat content by MRS without any negative lipid profile, BMI change and adverse effects. Larger extended trials are warranted to assess the long-term efficacy of HL tablet. (ClinicalTrials.gov number, NCT02491905.)

Disclosures:
The following people have nothing to disclose: Yeon Kim, Sung Woon Hong, Mi Hyung Lim, Jong Hwan Lim, Sung Hum Yeon, Yang Hyun Baek, Yong Kyun Cho, Joo Hyun Sohn